非平稳核组合

Darrin P. Lewis, T. Jebara, William Stafford Noble
{"title":"非平稳核组合","authors":"Darrin P. Lewis, T. Jebara, William Stafford Noble","doi":"10.1145/1143844.1143914","DOIUrl":null,"url":null,"abstract":"The power and popularity of kernel methods stem in part from their ability to handle diverse forms of structured inputs, including vectors, graphs and strings. Recently, several methods have been proposed for combining kernels from heterogeneous data sources. However, all of these methods produce stationary combinations; i.e., the relative weights of the various kernels do not vary among input examples. This article proposes a method for combining multiple kernels in a nonstationary fashion. The approach uses a large-margin latent-variable generative model within the maximum entropy discrimination (MED) framework. Latent parameter estimation is rendered tractable by variational bounds and an iterative optimization procedure. The classifier we use is a log-ratio of Gaussian mixtures, in which each component is implicitly mapped via a Mercer kernel function. We show that the support vector machine is a special case of this model. In this approach, discriminative parameter estimation is feasible via a fast sequential minimal optimization algorithm. Empirical results are presented on synthetic data, several benchmarks, and on a protein function annotation task.","PeriodicalId":124011,"journal":{"name":"Proceedings of the 23rd international conference on Machine learning","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"91","resultStr":"{\"title\":\"Nonstationary kernel combination\",\"authors\":\"Darrin P. Lewis, T. Jebara, William Stafford Noble\",\"doi\":\"10.1145/1143844.1143914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The power and popularity of kernel methods stem in part from their ability to handle diverse forms of structured inputs, including vectors, graphs and strings. Recently, several methods have been proposed for combining kernels from heterogeneous data sources. However, all of these methods produce stationary combinations; i.e., the relative weights of the various kernels do not vary among input examples. This article proposes a method for combining multiple kernels in a nonstationary fashion. The approach uses a large-margin latent-variable generative model within the maximum entropy discrimination (MED) framework. Latent parameter estimation is rendered tractable by variational bounds and an iterative optimization procedure. The classifier we use is a log-ratio of Gaussian mixtures, in which each component is implicitly mapped via a Mercer kernel function. We show that the support vector machine is a special case of this model. In this approach, discriminative parameter estimation is feasible via a fast sequential minimal optimization algorithm. Empirical results are presented on synthetic data, several benchmarks, and on a protein function annotation task.\",\"PeriodicalId\":124011,\"journal\":{\"name\":\"Proceedings of the 23rd international conference on Machine learning\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"91\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 23rd international conference on Machine learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1143844.1143914\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 23rd international conference on Machine learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1143844.1143914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 91

摘要

核方法的强大和流行部分源于它们处理各种形式的结构化输入的能力,包括向量、图和字符串。最近,人们提出了几种方法来组合来自异构数据源的核。然而,所有这些方法产生平稳组合;也就是说,各种核的相对权重在不同的输入示例中不会变化。本文提出了一种以非平稳方式组合多个核的方法。该方法在最大熵判别(MED)框架内使用大边际潜变量生成模型。隐参数估计通过变分边界和迭代优化过程变得易于处理。我们使用的分类器是高斯混合物的对数比,其中每个成分都通过默瑟核函数隐式映射。我们证明了支持向量机是该模型的一个特例。在该方法中,通过快速的顺序最小优化算法,判别参数估计是可行的。实证结果提出了合成数据,几个基准,并在蛋白质功能注释任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonstationary kernel combination
The power and popularity of kernel methods stem in part from their ability to handle diverse forms of structured inputs, including vectors, graphs and strings. Recently, several methods have been proposed for combining kernels from heterogeneous data sources. However, all of these methods produce stationary combinations; i.e., the relative weights of the various kernels do not vary among input examples. This article proposes a method for combining multiple kernels in a nonstationary fashion. The approach uses a large-margin latent-variable generative model within the maximum entropy discrimination (MED) framework. Latent parameter estimation is rendered tractable by variational bounds and an iterative optimization procedure. The classifier we use is a log-ratio of Gaussian mixtures, in which each component is implicitly mapped via a Mercer kernel function. We show that the support vector machine is a special case of this model. In this approach, discriminative parameter estimation is feasible via a fast sequential minimal optimization algorithm. Empirical results are presented on synthetic data, several benchmarks, and on a protein function annotation task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信