基于序列记忆器的无损压缩

Jan Gasthaus, Frank D. Wood, Y. Teh
{"title":"基于序列记忆器的无损压缩","authors":"Jan Gasthaus, Frank D. Wood, Y. Teh","doi":"10.1109/DCC.2010.36","DOIUrl":null,"url":null,"abstract":"In this work we describe a sequence compression method based on combining a Bayesian nonparametric sequence model with entropy encoding. The model, a hierarchy of Pitman-Yor processes of unbounded depth previously proposed by Wood et al. [16] in the context of language modelling, allows modelling of long-range dependencies by allowing conditioning contexts of unbounded length. We show that incremental approximate inference can be performed in this model, thereby allowing it to be used in a text compression setting. The resulting compressor reliably outperforms several PPM variants on many types of data, but is particularly effective in compressing data that exhibits power law properties.","PeriodicalId":299459,"journal":{"name":"2010 Data Compression Conference","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":"{\"title\":\"Lossless Compression Based on the Sequence Memoizer\",\"authors\":\"Jan Gasthaus, Frank D. Wood, Y. Teh\",\"doi\":\"10.1109/DCC.2010.36\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we describe a sequence compression method based on combining a Bayesian nonparametric sequence model with entropy encoding. The model, a hierarchy of Pitman-Yor processes of unbounded depth previously proposed by Wood et al. [16] in the context of language modelling, allows modelling of long-range dependencies by allowing conditioning contexts of unbounded length. We show that incremental approximate inference can be performed in this model, thereby allowing it to be used in a text compression setting. The resulting compressor reliably outperforms several PPM variants on many types of data, but is particularly effective in compressing data that exhibits power law properties.\",\"PeriodicalId\":299459,\"journal\":{\"name\":\"2010 Data Compression Conference\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Data Compression Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCC.2010.36\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2010.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

摘要

本文提出了一种基于贝叶斯非参数序列模型与熵编码相结合的序列压缩方法。该模型是Wood等人先前在语言建模上下文中提出的无界深度的Pitman-Yor过程的层次结构[16],通过允许无界长度的条件作用上下文,可以对远程依赖关系进行建模。我们展示了增量近似推理可以在这个模型中执行,从而允许它用于文本压缩设置。由此产生的压缩器在许多类型的数据上可靠地优于几种PPM变体,但在压缩显示幂律特性的数据时特别有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lossless Compression Based on the Sequence Memoizer
In this work we describe a sequence compression method based on combining a Bayesian nonparametric sequence model with entropy encoding. The model, a hierarchy of Pitman-Yor processes of unbounded depth previously proposed by Wood et al. [16] in the context of language modelling, allows modelling of long-range dependencies by allowing conditioning contexts of unbounded length. We show that incremental approximate inference can be performed in this model, thereby allowing it to be used in a text compression setting. The resulting compressor reliably outperforms several PPM variants on many types of data, but is particularly effective in compressing data that exhibits power law properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信