基于大小的路由策略的非渐近性能分析

E. Bachmat, J. Doncel
{"title":"基于大小的路由策略的非渐近性能分析","authors":"E. Bachmat, J. Doncel","doi":"10.1109/MASCOTS50786.2020.9285943","DOIUrl":null,"url":null,"abstract":"We investigate the performance of two size-based routing policies: the Size Interval Task Assignment (SITA) and Task Assignment based on Guessing Size (TAGS). We consider a system with two servers and Bounded Pareto distributed job sizes with tail parameter 1 where the difference between the size of the largest and the smallest job is finite. We show that the ratio between the mean waiting time of TAGS over the mean waiting time of SITA is unbounded when the largest job size is large and the arrival rate times the largest job size is less than one. We provide numerical experiments that show that our theoretical findings extend to Bounded Pareto distributed job sizes with tail parameter different to 1.","PeriodicalId":272614,"journal":{"name":"2020 28th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS)","volume":"772 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Non-Asymptotic Performance Analysis of Size-Based Routing Policies\",\"authors\":\"E. Bachmat, J. Doncel\",\"doi\":\"10.1109/MASCOTS50786.2020.9285943\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the performance of two size-based routing policies: the Size Interval Task Assignment (SITA) and Task Assignment based on Guessing Size (TAGS). We consider a system with two servers and Bounded Pareto distributed job sizes with tail parameter 1 where the difference between the size of the largest and the smallest job is finite. We show that the ratio between the mean waiting time of TAGS over the mean waiting time of SITA is unbounded when the largest job size is large and the arrival rate times the largest job size is less than one. We provide numerical experiments that show that our theoretical findings extend to Bounded Pareto distributed job sizes with tail parameter different to 1.\",\"PeriodicalId\":272614,\"journal\":{\"name\":\"2020 28th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS)\",\"volume\":\"772 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 28th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MASCOTS50786.2020.9285943\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 28th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MASCOTS50786.2020.9285943","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们研究了两种基于大小的路由策略的性能:大小间隔任务分配(SITA)和基于猜测大小的任务分配(TAGS)。我们考虑一个具有两个服务器和有界Pareto分布作业大小的系统,其中最大和最小作业大小之间的差是有限的,尾部参数为1。我们证明了当最大作业规模较大且到达率乘以最大作业规模小于1时,tag的平均等待时间与SITA的平均等待时间之比是无界的。我们提供的数值实验表明,我们的理论发现可以扩展到尾参数为1的有界帕累托分布作业规模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-Asymptotic Performance Analysis of Size-Based Routing Policies
We investigate the performance of two size-based routing policies: the Size Interval Task Assignment (SITA) and Task Assignment based on Guessing Size (TAGS). We consider a system with two servers and Bounded Pareto distributed job sizes with tail parameter 1 where the difference between the size of the largest and the smallest job is finite. We show that the ratio between the mean waiting time of TAGS over the mean waiting time of SITA is unbounded when the largest job size is large and the arrival rate times the largest job size is less than one. We provide numerical experiments that show that our theoretical findings extend to Bounded Pareto distributed job sizes with tail parameter different to 1.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信