{"title":"基于转换的尖峰神经网络中节能推理的尖峰感知训练和时间窗优化","authors":"Vijaya Kumar, Suresh Balanethiram","doi":"10.1109/IConSCEPT57958.2023.10170596","DOIUrl":null,"url":null,"abstract":"Spiking Neural Networks (SNNs) are a promising alternative to traditional Deep Neural Networks (DNNs) due to their ability to operate in low-power event-driven mode. However, training SNNs from scratch remains challenging, and conversion-based SNNs derived from pre-trained DNNs have become popular. In this paper, we focus on generating learnable parameters for the inference phase by analyzing the timing window of rate-coded spiking activation using N-MNIST digit classification. We compare the training accuracy of a non-spiking ANN model with the spike ignored and spike-aware spiking activation models trained at different time intervals. We also use regularization to control the mean spike rate of neurons and include a moving-average pooling layer to improve classification accuracy. We provide insights into optimizing the timing window of rate-coded spiking activation for energy-efficient and accurate SNN inference. Our results show that spike-aware training with regularization and moving-average pooling improves convergence and achieves high accuracy. These findings can help improve the training of SNNs for various AI applications.","PeriodicalId":240167,"journal":{"name":"2023 International Conference on Signal Processing, Computation, Electronics, Power and Telecommunication (IConSCEPT)","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spike-Aware Training and Timing Window Optimization for Energy-Efficient Inference in Conversion-Based Spiking Neural Networks\",\"authors\":\"Vijaya Kumar, Suresh Balanethiram\",\"doi\":\"10.1109/IConSCEPT57958.2023.10170596\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spiking Neural Networks (SNNs) are a promising alternative to traditional Deep Neural Networks (DNNs) due to their ability to operate in low-power event-driven mode. However, training SNNs from scratch remains challenging, and conversion-based SNNs derived from pre-trained DNNs have become popular. In this paper, we focus on generating learnable parameters for the inference phase by analyzing the timing window of rate-coded spiking activation using N-MNIST digit classification. We compare the training accuracy of a non-spiking ANN model with the spike ignored and spike-aware spiking activation models trained at different time intervals. We also use regularization to control the mean spike rate of neurons and include a moving-average pooling layer to improve classification accuracy. We provide insights into optimizing the timing window of rate-coded spiking activation for energy-efficient and accurate SNN inference. Our results show that spike-aware training with regularization and moving-average pooling improves convergence and achieves high accuracy. These findings can help improve the training of SNNs for various AI applications.\",\"PeriodicalId\":240167,\"journal\":{\"name\":\"2023 International Conference on Signal Processing, Computation, Electronics, Power and Telecommunication (IConSCEPT)\",\"volume\":\"120 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on Signal Processing, Computation, Electronics, Power and Telecommunication (IConSCEPT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IConSCEPT57958.2023.10170596\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Signal Processing, Computation, Electronics, Power and Telecommunication (IConSCEPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IConSCEPT57958.2023.10170596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Spike-Aware Training and Timing Window Optimization for Energy-Efficient Inference in Conversion-Based Spiking Neural Networks
Spiking Neural Networks (SNNs) are a promising alternative to traditional Deep Neural Networks (DNNs) due to their ability to operate in low-power event-driven mode. However, training SNNs from scratch remains challenging, and conversion-based SNNs derived from pre-trained DNNs have become popular. In this paper, we focus on generating learnable parameters for the inference phase by analyzing the timing window of rate-coded spiking activation using N-MNIST digit classification. We compare the training accuracy of a non-spiking ANN model with the spike ignored and spike-aware spiking activation models trained at different time intervals. We also use regularization to control the mean spike rate of neurons and include a moving-average pooling layer to improve classification accuracy. We provide insights into optimizing the timing window of rate-coded spiking activation for energy-efficient and accurate SNN inference. Our results show that spike-aware training with regularization and moving-average pooling improves convergence and achieves high accuracy. These findings can help improve the training of SNNs for various AI applications.