基于卡尔曼滤波的形状估计:迈向完全软本体感觉

Dario Lunni, Goffredo Giordano, E. Sinibaldi, M. Cianchetti, B. Mazzolai
{"title":"基于卡尔曼滤波的形状估计:迈向完全软本体感觉","authors":"Dario Lunni, Goffredo Giordano, E. Sinibaldi, M. Cianchetti, B. Mazzolai","doi":"10.1109/ROBOSOFT.2018.8405382","DOIUrl":null,"url":null,"abstract":"An innovative methodology to realize a sensing system able to estimate the shape of a soft robot arm without hampering “softness” is presented. The system is based on a low-cost plastic optical fiber (POF) used as curvature sensor and on a simplified steady-state model, both integrated in an Adaptive Extended Kalman Filter (AEKF). Sensory feedback was obtained through accelerometers and it was used as quantitative benchmark for the AEKF. The AEKF estimation turned out to be more accurate (RMS error < 5°) than the model prediction alone and the soft sensor alone, thus supporting the proposed fully soft proprioception strategy.","PeriodicalId":306255,"journal":{"name":"2018 IEEE International Conference on Soft Robotics (RoboSoft)","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Shape estimation based on Kalman filtering: Towards fully soft proprioception\",\"authors\":\"Dario Lunni, Goffredo Giordano, E. Sinibaldi, M. Cianchetti, B. Mazzolai\",\"doi\":\"10.1109/ROBOSOFT.2018.8405382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An innovative methodology to realize a sensing system able to estimate the shape of a soft robot arm without hampering “softness” is presented. The system is based on a low-cost plastic optical fiber (POF) used as curvature sensor and on a simplified steady-state model, both integrated in an Adaptive Extended Kalman Filter (AEKF). Sensory feedback was obtained through accelerometers and it was used as quantitative benchmark for the AEKF. The AEKF estimation turned out to be more accurate (RMS error < 5°) than the model prediction alone and the soft sensor alone, thus supporting the proposed fully soft proprioception strategy.\",\"PeriodicalId\":306255,\"journal\":{\"name\":\"2018 IEEE International Conference on Soft Robotics (RoboSoft)\",\"volume\":\"92 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Soft Robotics (RoboSoft)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBOSOFT.2018.8405382\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Soft Robotics (RoboSoft)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOSOFT.2018.8405382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

提出了一种创新的方法来实现一种能够在不影响“柔软度”的情况下估计柔性机械臂形状的传感系统。该系统基于低成本的塑料光纤(POF)作为曲率传感器和简化的稳态模型,两者都集成在自适应扩展卡尔曼滤波器(AEKF)中。通过加速度计获得感官反馈,并将其作为AEKF的定量基准。结果表明,AEKF估计比单独的模型预测和单独的软传感器更准确(RMS误差< 5°),从而支持提出的完全软本体感觉策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shape estimation based on Kalman filtering: Towards fully soft proprioception
An innovative methodology to realize a sensing system able to estimate the shape of a soft robot arm without hampering “softness” is presented. The system is based on a low-cost plastic optical fiber (POF) used as curvature sensor and on a simplified steady-state model, both integrated in an Adaptive Extended Kalman Filter (AEKF). Sensory feedback was obtained through accelerometers and it was used as quantitative benchmark for the AEKF. The AEKF estimation turned out to be more accurate (RMS error < 5°) than the model prediction alone and the soft sensor alone, thus supporting the proposed fully soft proprioception strategy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信