建模和恢复非传递成对比较矩阵

Dehui Yang, M. Wakin
{"title":"建模和恢复非传递成对比较矩阵","authors":"Dehui Yang, M. Wakin","doi":"10.1109/SAMPTA.2015.7148846","DOIUrl":null,"url":null,"abstract":"Pairwise comparison matrices arise in numerous applications including collaborative filtering, elections, economic exchanges, etc. In this paper, we propose a new low-rank model for pairwise comparison matrices that accommodates non-transitive pairwise comparisons. Based on this model, we consider the regime where one has limited observations of a pairwise comparison matrix and wants to reconstruct the whole matrix from these observations using matrix completion. To do this, we adopt a recently developed alternating minimization algorithm to this particular matrix completion problem and derive a theoretical guarantee for its performance. Numerical simulations using synthetic data support our proposed approach.","PeriodicalId":311830,"journal":{"name":"2015 International Conference on Sampling Theory and Applications (SampTA)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Modeling and recovering non-transitive pairwise comparison matrices\",\"authors\":\"Dehui Yang, M. Wakin\",\"doi\":\"10.1109/SAMPTA.2015.7148846\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pairwise comparison matrices arise in numerous applications including collaborative filtering, elections, economic exchanges, etc. In this paper, we propose a new low-rank model for pairwise comparison matrices that accommodates non-transitive pairwise comparisons. Based on this model, we consider the regime where one has limited observations of a pairwise comparison matrix and wants to reconstruct the whole matrix from these observations using matrix completion. To do this, we adopt a recently developed alternating minimization algorithm to this particular matrix completion problem and derive a theoretical guarantee for its performance. Numerical simulations using synthetic data support our proposed approach.\",\"PeriodicalId\":311830,\"journal\":{\"name\":\"2015 International Conference on Sampling Theory and Applications (SampTA)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Sampling Theory and Applications (SampTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAMPTA.2015.7148846\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Sampling Theory and Applications (SampTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMPTA.2015.7148846","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

两两比较矩阵出现在许多应用中,包括协同过滤、选举、经济交流等。本文提出了一种适用于非传递两两比较的两两比较矩阵的低秩模型。在此模型的基础上,我们考虑了这样一种情况:一个人对两两比较矩阵的观测值有限,并希望利用矩阵补全从这些观测值重建整个矩阵。为了做到这一点,我们采用了最近开发的交替最小化算法来解决这个特殊的矩阵补全问题,并得出了其性能的理论保证。使用合成数据的数值模拟支持我们提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling and recovering non-transitive pairwise comparison matrices
Pairwise comparison matrices arise in numerous applications including collaborative filtering, elections, economic exchanges, etc. In this paper, we propose a new low-rank model for pairwise comparison matrices that accommodates non-transitive pairwise comparisons. Based on this model, we consider the regime where one has limited observations of a pairwise comparison matrix and wants to reconstruct the whole matrix from these observations using matrix completion. To do this, we adopt a recently developed alternating minimization algorithm to this particular matrix completion problem and derive a theoretical guarantee for its performance. Numerical simulations using synthetic data support our proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信