通过实现sobel边缘检测算法对并行API和JAVA的性能进行分析

Krishan Gopal Gupta, Nisha Agrawal, Samrit Kumar Maity
{"title":"通过实现sobel边缘检测算法对并行API和JAVA的性能进行分析","authors":"Krishan Gopal Gupta, Nisha Agrawal, Samrit Kumar Maity","doi":"10.1109/PARCOMPTECH.2013.6621408","DOIUrl":null,"url":null,"abstract":"This paper presents performance comparison between aparapi (a parallel API for GPU) and java by implementing sobel edge detection Algorithm in java (run on CPU) and aparapi (run on GPU). Our GPU implementation using Aparapi shows speedup of 6x against CPU implementation using java (serial implementation) and speedup of 2x using java prallel implementation (less than 8 threads). Experiments indicate that java threaded version shows speedup up to 4X against Aparapi implementation (more than 8 threads). This comparison study also include implementation of sobel edge detection algorithm on CPU (sequential, threaded version) and aparapi version for enabled on GPU. This article also discusses how to implement Aparapi kernels for data-parallel operations of Typical Edge detection algorithms based on Sobel operator within Java applications The results for performance gains that can be achieved using with and without Aparapi framework.","PeriodicalId":344858,"journal":{"name":"2013 National Conference on Parallel Computing Technologies (PARCOMPTECH)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Performance analysis between aparapi (a parallel API) and JAVA by implementing sobel edge detection Algorithm\",\"authors\":\"Krishan Gopal Gupta, Nisha Agrawal, Samrit Kumar Maity\",\"doi\":\"10.1109/PARCOMPTECH.2013.6621408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents performance comparison between aparapi (a parallel API for GPU) and java by implementing sobel edge detection Algorithm in java (run on CPU) and aparapi (run on GPU). Our GPU implementation using Aparapi shows speedup of 6x against CPU implementation using java (serial implementation) and speedup of 2x using java prallel implementation (less than 8 threads). Experiments indicate that java threaded version shows speedup up to 4X against Aparapi implementation (more than 8 threads). This comparison study also include implementation of sobel edge detection algorithm on CPU (sequential, threaded version) and aparapi version for enabled on GPU. This article also discusses how to implement Aparapi kernels for data-parallel operations of Typical Edge detection algorithms based on Sobel operator within Java applications The results for performance gains that can be achieved using with and without Aparapi framework.\",\"PeriodicalId\":344858,\"journal\":{\"name\":\"2013 National Conference on Parallel Computing Technologies (PARCOMPTECH)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 National Conference on Parallel Computing Technologies (PARCOMPTECH)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PARCOMPTECH.2013.6621408\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 National Conference on Parallel Computing Technologies (PARCOMPTECH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PARCOMPTECH.2013.6621408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

本文通过在java(运行在CPU上)和aparapi(运行在GPU上)上实现sobel边缘检测算法,比较了aparapi (GPU上的并行API)和java的性能。与使用java(串行实现)的CPU实现相比,我们使用Aparapi的GPU实现的速度提高了6倍,使用java并行实现(少于8个线程)的速度提高了2倍。实验表明,java线程版本的速度比Aparapi实现(超过8个线程)提高了4倍。本比较研究还包括在CPU上实现的sobel边缘检测算法(顺序、线程版本)和在GPU上启用的aparapi版本。本文还讨论了如何在Java应用程序中实现基于Sobel算子的典型边缘检测算法的数据并行操作的Aparapi内核,以及使用和不使用Aparapi框架可以实现的性能提升的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance analysis between aparapi (a parallel API) and JAVA by implementing sobel edge detection Algorithm
This paper presents performance comparison between aparapi (a parallel API for GPU) and java by implementing sobel edge detection Algorithm in java (run on CPU) and aparapi (run on GPU). Our GPU implementation using Aparapi shows speedup of 6x against CPU implementation using java (serial implementation) and speedup of 2x using java prallel implementation (less than 8 threads). Experiments indicate that java threaded version shows speedup up to 4X against Aparapi implementation (more than 8 threads). This comparison study also include implementation of sobel edge detection algorithm on CPU (sequential, threaded version) and aparapi version for enabled on GPU. This article also discusses how to implement Aparapi kernels for data-parallel operations of Typical Edge detection algorithms based on Sobel operator within Java applications The results for performance gains that can be achieved using with and without Aparapi framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信