考虑需求响应的混合电力系统的粒子群优化

Alexander Moses, Alberto Landeros, M. F. Abdel-Fattah
{"title":"考虑需求响应的混合电力系统的粒子群优化","authors":"Alexander Moses, Alberto Landeros, M. F. Abdel-Fattah","doi":"10.1109/RTUCON.2018.8659835","DOIUrl":null,"url":null,"abstract":"This paper presents an optimal sizing method for a hybrid wind, solar, battery storage and diesel generation units designed to meet a specific demand. The energy output and load demand used in the model is structured in one hour intervals over the course of a year. In addition, demand response is implemented showing a direct relationship with total system price. Based on generating unit capital and variable costs, the particle swarm optimization (PSO) algorithm is implemented. The yearly normalized total system cost is taken as the objective function which is based on the generating technologies life cycle. PSO exhibits an optimum generating unit sizing assuming 5 percent of the average load as demand response power capacity.","PeriodicalId":192943,"journal":{"name":"2018 IEEE 59th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Particle Swarm Optimization for Sizing Hybrid Power Systems Incorporating Demand Response\",\"authors\":\"Alexander Moses, Alberto Landeros, M. F. Abdel-Fattah\",\"doi\":\"10.1109/RTUCON.2018.8659835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an optimal sizing method for a hybrid wind, solar, battery storage and diesel generation units designed to meet a specific demand. The energy output and load demand used in the model is structured in one hour intervals over the course of a year. In addition, demand response is implemented showing a direct relationship with total system price. Based on generating unit capital and variable costs, the particle swarm optimization (PSO) algorithm is implemented. The yearly normalized total system cost is taken as the objective function which is based on the generating technologies life cycle. PSO exhibits an optimum generating unit sizing assuming 5 percent of the average load as demand response power capacity.\",\"PeriodicalId\":192943,\"journal\":{\"name\":\"2018 IEEE 59th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 59th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RTUCON.2018.8659835\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 59th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTUCON.2018.8659835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

针对风电、太阳能、电池储能和柴油混合发电机组的特定需求,提出了一种优化发电机组尺寸的方法。模型中使用的能量输出和负载需求在一年的过程中以一小时的间隔进行结构化。此外,需求响应的实现与系统总价格直接相关。基于发电机组资金和可变成本,实现了粒子群优化算法。以基于发电技术生命周期的年归一化系统总成本为目标函数。假设需求响应电力容量为平均负荷的5%,PSO显示出最佳发电机组规模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Particle Swarm Optimization for Sizing Hybrid Power Systems Incorporating Demand Response
This paper presents an optimal sizing method for a hybrid wind, solar, battery storage and diesel generation units designed to meet a specific demand. The energy output and load demand used in the model is structured in one hour intervals over the course of a year. In addition, demand response is implemented showing a direct relationship with total system price. Based on generating unit capital and variable costs, the particle swarm optimization (PSO) algorithm is implemented. The yearly normalized total system cost is taken as the objective function which is based on the generating technologies life cycle. PSO exhibits an optimum generating unit sizing assuming 5 percent of the average load as demand response power capacity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信