具有敏感边缘的独立级联模型的谱界

E. Lee, Sudeep Kamath, E. Abbe, S. Kulkarni
{"title":"具有敏感边缘的独立级联模型的谱界","authors":"E. Lee, Sudeep Kamath, E. Abbe, S. Kulkarni","doi":"10.1109/CISS.2016.7460579","DOIUrl":null,"url":null,"abstract":"This paper studies independent cascade models where influence propagates from seed-nodes along edges with independent probabilities. Upper-bounds for the expected number of influenced nodes were previously proposed using the spectral norm of a Hazard matrix. However, these bounds turn out loose in many cases, in particular with respect to sensitive edges such as bottlenecks, seed adjacent, and high probability edges. This paper proposes a similar bound that improves in such cases by handling sensitives edges more carefully.","PeriodicalId":346776,"journal":{"name":"2016 Annual Conference on Information Science and Systems (CISS)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Spectral bounds for independent cascade model with sensitive edges\",\"authors\":\"E. Lee, Sudeep Kamath, E. Abbe, S. Kulkarni\",\"doi\":\"10.1109/CISS.2016.7460579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies independent cascade models where influence propagates from seed-nodes along edges with independent probabilities. Upper-bounds for the expected number of influenced nodes were previously proposed using the spectral norm of a Hazard matrix. However, these bounds turn out loose in many cases, in particular with respect to sensitive edges such as bottlenecks, seed adjacent, and high probability edges. This paper proposes a similar bound that improves in such cases by handling sensitives edges more carefully.\",\"PeriodicalId\":346776,\"journal\":{\"name\":\"2016 Annual Conference on Information Science and Systems (CISS)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Annual Conference on Information Science and Systems (CISS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISS.2016.7460579\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Annual Conference on Information Science and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS.2016.7460579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文研究了影响从种子节点沿具有独立概率的边缘传播的独立级联模型。先前使用危险矩阵的谱范数提出了受影响节点的期望数目的上界。然而,在许多情况下,这些边界变得松散,特别是关于敏感边,如瓶颈,种子相邻边和高概率边。本文提出了一个类似的边界,通过更仔细地处理敏感边来改进这种情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectral bounds for independent cascade model with sensitive edges
This paper studies independent cascade models where influence propagates from seed-nodes along edges with independent probabilities. Upper-bounds for the expected number of influenced nodes were previously proposed using the spectral norm of a Hazard matrix. However, these bounds turn out loose in many cases, in particular with respect to sensitive edges such as bottlenecks, seed adjacent, and high probability edges. This paper proposes a similar bound that improves in such cases by handling sensitives edges more carefully.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信