肾病理中多种染色方式相互比较检测肾小球

Maja Temerinac-Ott, G. Forestier, J. Schmitz, M. Hermsen, J. H. Braseni, F. Feuerhake, Cédric Wemmert
{"title":"肾病理中多种染色方式相互比较检测肾小球","authors":"Maja Temerinac-Ott, G. Forestier, J. Schmitz, M. Hermsen, J. H. Braseni, F. Feuerhake, Cédric Wemmert","doi":"10.1109/ISPA.2017.8073562","DOIUrl":null,"url":null,"abstract":"We evaluate the detection of glomerular structures in whole slide images (WSIs) of histopathological slides stained with multiple histochemical and immuno-histochemical staining using a convolutional neural network (CNN) based approach. We mutually compare the CNN performance on different stainings (Jones H&E, PAS, Sirius Red and CDIO) and we present a novel approach to improve glomeruli detection on one staining by taking into account the classification results from differently stained consecutive sections of the same tissue. Using this integrative approach, the detection rate (Fl-score) on a single stain can be improved by up to 30%.","PeriodicalId":117602,"journal":{"name":"Proceedings of the 10th International Symposium on Image and Signal Processing and Analysis","volume":"218 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"Detection of glomeruli in renal pathology by mutual comparison of multiple staining modalities\",\"authors\":\"Maja Temerinac-Ott, G. Forestier, J. Schmitz, M. Hermsen, J. H. Braseni, F. Feuerhake, Cédric Wemmert\",\"doi\":\"10.1109/ISPA.2017.8073562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We evaluate the detection of glomerular structures in whole slide images (WSIs) of histopathological slides stained with multiple histochemical and immuno-histochemical staining using a convolutional neural network (CNN) based approach. We mutually compare the CNN performance on different stainings (Jones H&E, PAS, Sirius Red and CDIO) and we present a novel approach to improve glomeruli detection on one staining by taking into account the classification results from differently stained consecutive sections of the same tissue. Using this integrative approach, the detection rate (Fl-score) on a single stain can be improved by up to 30%.\",\"PeriodicalId\":117602,\"journal\":{\"name\":\"Proceedings of the 10th International Symposium on Image and Signal Processing and Analysis\",\"volume\":\"218 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 10th International Symposium on Image and Signal Processing and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPA.2017.8073562\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th International Symposium on Image and Signal Processing and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPA.2017.8073562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

摘要

我们使用基于卷积神经网络(CNN)的方法评估了采用多种组织化学和免疫组织化学染色染色的组织病理学切片的全片图像(wsi)中肾小球结构的检测。我们相互比较了CNN在不同染色(Jones H&E, PAS, Sirius Red和CDIO)上的表现,并提出了一种新的方法,通过考虑同一组织的不同染色连续切片的分类结果,来提高对一种染色的肾小球检测。使用这种综合方法,单个染色的检出率(Fl-score)可提高高达30%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detection of glomeruli in renal pathology by mutual comparison of multiple staining modalities
We evaluate the detection of glomerular structures in whole slide images (WSIs) of histopathological slides stained with multiple histochemical and immuno-histochemical staining using a convolutional neural network (CNN) based approach. We mutually compare the CNN performance on different stainings (Jones H&E, PAS, Sirius Red and CDIO) and we present a novel approach to improve glomeruli detection on one staining by taking into account the classification results from differently stained consecutive sections of the same tissue. Using this integrative approach, the detection rate (Fl-score) on a single stain can be improved by up to 30%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信