{"title":"护理标签识别","authors":"Jiri Kralicek, Jiri Matas, M. Busta","doi":"10.1109/ICDAR.2019.00158","DOIUrl":null,"url":null,"abstract":"The paper introduces the problem of care label recognition and presents a method addressing it. A care label, also called a care tag, is a small piece of cloth or paper attached to a garment providing instructions for its maintenance and information about e.g. the material and size. The informationand instructions are written as symbols or plain text. Care label recognition is a challenging text and pictogram recognition problem - the often sewn text is small, looking as if printed using a non-standard font; the contrast of the text gradually fades, making OCR progressively more difficult. On the other hand, the information provided is typically redundant and thus it facilitates semi-supervised learning. The presented care label recognition method is based on the recently published End-to-End Method for Multi-LanguageScene Text, E2E-MLT, Busta et al. 2018, exploiting specific constraints, e.g. a care label vocabulary with multi-language equivalences. Experiments conducted on a newly-created dataset of 63 care label images show that even when exploiting problem-specific constraints, a state-of-the-art scene text detection and recognition method achieve precision and recall slightly above 0.6, confirming the challenging nature of the problem.","PeriodicalId":325437,"journal":{"name":"2019 International Conference on Document Analysis and Recognition (ICDAR)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Care Label Recognition\",\"authors\":\"Jiri Kralicek, Jiri Matas, M. Busta\",\"doi\":\"10.1109/ICDAR.2019.00158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper introduces the problem of care label recognition and presents a method addressing it. A care label, also called a care tag, is a small piece of cloth or paper attached to a garment providing instructions for its maintenance and information about e.g. the material and size. The informationand instructions are written as symbols or plain text. Care label recognition is a challenging text and pictogram recognition problem - the often sewn text is small, looking as if printed using a non-standard font; the contrast of the text gradually fades, making OCR progressively more difficult. On the other hand, the information provided is typically redundant and thus it facilitates semi-supervised learning. The presented care label recognition method is based on the recently published End-to-End Method for Multi-LanguageScene Text, E2E-MLT, Busta et al. 2018, exploiting specific constraints, e.g. a care label vocabulary with multi-language equivalences. Experiments conducted on a newly-created dataset of 63 care label images show that even when exploiting problem-specific constraints, a state-of-the-art scene text detection and recognition method achieve precision and recall slightly above 0.6, confirming the challenging nature of the problem.\",\"PeriodicalId\":325437,\"journal\":{\"name\":\"2019 International Conference on Document Analysis and Recognition (ICDAR)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Document Analysis and Recognition (ICDAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDAR.2019.00158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Document Analysis and Recognition (ICDAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2019.00158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The paper introduces the problem of care label recognition and presents a method addressing it. A care label, also called a care tag, is a small piece of cloth or paper attached to a garment providing instructions for its maintenance and information about e.g. the material and size. The informationand instructions are written as symbols or plain text. Care label recognition is a challenging text and pictogram recognition problem - the often sewn text is small, looking as if printed using a non-standard font; the contrast of the text gradually fades, making OCR progressively more difficult. On the other hand, the information provided is typically redundant and thus it facilitates semi-supervised learning. The presented care label recognition method is based on the recently published End-to-End Method for Multi-LanguageScene Text, E2E-MLT, Busta et al. 2018, exploiting specific constraints, e.g. a care label vocabulary with multi-language equivalences. Experiments conducted on a newly-created dataset of 63 care label images show that even when exploiting problem-specific constraints, a state-of-the-art scene text detection and recognition method achieve precision and recall slightly above 0.6, confirming the challenging nature of the problem.