基于最佳特征基的单通道盲源分离

Bin Gao, W. L. Woo, S. Dlay
{"title":"基于最佳特征基的单通道盲源分离","authors":"Bin Gao, W. L. Woo, S. Dlay","doi":"10.1109/ICTTA.2008.4530049","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel technique for separating single channel recording of speech mixture using a hybrid of maximum likelihood and maximum a posteriori estimators. In addition, the new algorithm proposes a new approach that accounts for the time structure of the source signals by encoding them into a set of basis filters that are characteristically the most significant. Real time testing of the new algorithm has been conducted and the obtained results are very encouraging.","PeriodicalId":330215,"journal":{"name":"2008 3rd International Conference on Information and Communication Technologies: From Theory to Applications","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Single Channel Blind Source Separation using the Best Characteristic Basis\",\"authors\":\"Bin Gao, W. L. Woo, S. Dlay\",\"doi\":\"10.1109/ICTTA.2008.4530049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel technique for separating single channel recording of speech mixture using a hybrid of maximum likelihood and maximum a posteriori estimators. In addition, the new algorithm proposes a new approach that accounts for the time structure of the source signals by encoding them into a set of basis filters that are characteristically the most significant. Real time testing of the new algorithm has been conducted and the obtained results are very encouraging.\",\"PeriodicalId\":330215,\"journal\":{\"name\":\"2008 3rd International Conference on Information and Communication Technologies: From Theory to Applications\",\"volume\":\"106 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 3rd International Conference on Information and Communication Technologies: From Theory to Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTTA.2008.4530049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 3rd International Conference on Information and Communication Technologies: From Theory to Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTTA.2008.4530049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了一种利用最大似然估计和最大后验估计的混合方法分离语音混合单通道记录的新方法。此外,新算法提出了一种新的方法,通过将源信号编码成一组特征最显著的基滤波器来考虑源信号的时间结构。对新算法进行了实时测试,取得了令人鼓舞的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Single Channel Blind Source Separation using the Best Characteristic Basis
This paper proposes a novel technique for separating single channel recording of speech mixture using a hybrid of maximum likelihood and maximum a posteriori estimators. In addition, the new algorithm proposes a new approach that accounts for the time structure of the source signals by encoding them into a set of basis filters that are characteristically the most significant. Real time testing of the new algorithm has been conducted and the obtained results are very encouraging.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信