Yosuke Kubota, Thomas Schick Riken, Japan., Mathematisches Institut, Universitat Gottingen
{"title":"Gromov-Lawson余维2对正标量曲率的阻碍与C *指数","authors":"Yosuke Kubota, Thomas Schick Riken, Japan., Mathematisches Institut, Universitat Gottingen","doi":"10.2140/GT.2021.25.949","DOIUrl":null,"url":null,"abstract":"Gromov and Lawson developed a codimension 2 index obstruction to positive scalar curvature for a closed spin manifold M, later refined by Hanke, Pape and Schick. Kubota has shown that also this obstruction can be obtained from the Rosenberg index of the ambient manifold M which takes values in the K-theory of the maximal C*-algebra of the fundamental group of M, using relative index constructions. \nIn this note, we give a slightly simplified account of Kubota's work and remark that it also applies to the signature operator, thus recovering the homotopy invariance of higher signatures of codimension 2 submanifolds of Higson, Schick, Xie.","PeriodicalId":309711,"journal":{"name":"arXiv: K-Theory and Homology","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"The Gromov–Lawson codimension 2 obstruction\\nto positive scalar curvature and the C∗–index\",\"authors\":\"Yosuke Kubota, Thomas Schick Riken, Japan., Mathematisches Institut, Universitat Gottingen\",\"doi\":\"10.2140/GT.2021.25.949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gromov and Lawson developed a codimension 2 index obstruction to positive scalar curvature for a closed spin manifold M, later refined by Hanke, Pape and Schick. Kubota has shown that also this obstruction can be obtained from the Rosenberg index of the ambient manifold M which takes values in the K-theory of the maximal C*-algebra of the fundamental group of M, using relative index constructions. \\nIn this note, we give a slightly simplified account of Kubota's work and remark that it also applies to the signature operator, thus recovering the homotopy invariance of higher signatures of codimension 2 submanifolds of Higson, Schick, Xie.\",\"PeriodicalId\":309711,\"journal\":{\"name\":\"arXiv: K-Theory and Homology\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/GT.2021.25.949\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/GT.2021.25.949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Gromov–Lawson codimension 2 obstruction
to positive scalar curvature and the C∗–index
Gromov and Lawson developed a codimension 2 index obstruction to positive scalar curvature for a closed spin manifold M, later refined by Hanke, Pape and Schick. Kubota has shown that also this obstruction can be obtained from the Rosenberg index of the ambient manifold M which takes values in the K-theory of the maximal C*-algebra of the fundamental group of M, using relative index constructions.
In this note, we give a slightly simplified account of Kubota's work and remark that it also applies to the signature operator, thus recovering the homotopy invariance of higher signatures of codimension 2 submanifolds of Higson, Schick, Xie.