单侧惯性和肌肉活动传感器融合步态周期进度估计*

Christopher Caulcrick, Felix Russell, Samuel Wilson, Caleb Sawade, R. Vaidyanathan
{"title":"单侧惯性和肌肉活动传感器融合步态周期进度估计*","authors":"Christopher Caulcrick, Felix Russell, Samuel Wilson, Caleb Sawade, R. Vaidyanathan","doi":"10.1109/BIOROB.2018.8487936","DOIUrl":null,"url":null,"abstract":"This paper introduces a method which uses feedforward neural networks (FNNs) for estimating gait cycle progress using data recorded from inertial and muscle activity sensors attached to one side of the lower body. Three-axis inertial measurement unit (IMU) readings from accelerometers and gyroscopes located above the outer ankle and knee were fused with mechanomyogram (MMG) sensor readings from across major muscle groups on the left leg. Validation was against ground truth gathered concurrently with VICON motion capture. The performance was characterised by rms error (Erms) and max error (Emax), averaged across four cross-validated trials, and enhanced by adjusting number of sliding window frames and hidden layer neurons. The final configuration estimated gait cycle progress with Erms of 1.6% and Emax of 6.8%. This demonstrates promise for such a method to be used for control of unilateral robotic prostheses and exoskeletons, providing state estimation of gait progress from low power sensors limited to one side of the lower body.","PeriodicalId":382522,"journal":{"name":"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Unilateral Inertial and Muscle Activity Sensor Fusion for Gait Cycle Progress Estimation*\",\"authors\":\"Christopher Caulcrick, Felix Russell, Samuel Wilson, Caleb Sawade, R. Vaidyanathan\",\"doi\":\"10.1109/BIOROB.2018.8487936\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a method which uses feedforward neural networks (FNNs) for estimating gait cycle progress using data recorded from inertial and muscle activity sensors attached to one side of the lower body. Three-axis inertial measurement unit (IMU) readings from accelerometers and gyroscopes located above the outer ankle and knee were fused with mechanomyogram (MMG) sensor readings from across major muscle groups on the left leg. Validation was against ground truth gathered concurrently with VICON motion capture. The performance was characterised by rms error (Erms) and max error (Emax), averaged across four cross-validated trials, and enhanced by adjusting number of sliding window frames and hidden layer neurons. The final configuration estimated gait cycle progress with Erms of 1.6% and Emax of 6.8%. This demonstrates promise for such a method to be used for control of unilateral robotic prostheses and exoskeletons, providing state estimation of gait progress from low power sensors limited to one side of the lower body.\",\"PeriodicalId\":382522,\"journal\":{\"name\":\"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIOROB.2018.8487936\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOROB.2018.8487936","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文介绍了一种使用前馈神经网络(fnn)来估计步态周期进展的方法,该方法利用附着在下半身一侧的惯性和肌肉活动传感器记录的数据。来自外脚踝和膝盖上方加速度计和陀螺仪的三轴惯性测量单元(IMU)读数与来自左腿主要肌肉群的肌力图(MMG)传感器读数融合。验证是基于与VICON动作捕捉同时收集的地面真相。性能的特征是均方根误差(Erms)和最大误差(Emax),在四个交叉验证的试验中平均,并通过调整滑动窗口框架和隐藏层神经元的数量来增强。最终配置估计步态周期进展的Erms为1.6%,Emax为6.8%。这表明,这种方法有望用于控制单侧机器人假体和外骨骼,从限制在下半身一侧的低功率传感器提供步态进展的状态估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unilateral Inertial and Muscle Activity Sensor Fusion for Gait Cycle Progress Estimation*
This paper introduces a method which uses feedforward neural networks (FNNs) for estimating gait cycle progress using data recorded from inertial and muscle activity sensors attached to one side of the lower body. Three-axis inertial measurement unit (IMU) readings from accelerometers and gyroscopes located above the outer ankle and knee were fused with mechanomyogram (MMG) sensor readings from across major muscle groups on the left leg. Validation was against ground truth gathered concurrently with VICON motion capture. The performance was characterised by rms error (Erms) and max error (Emax), averaged across four cross-validated trials, and enhanced by adjusting number of sliding window frames and hidden layer neurons. The final configuration estimated gait cycle progress with Erms of 1.6% and Emax of 6.8%. This demonstrates promise for such a method to be used for control of unilateral robotic prostheses and exoskeletons, providing state estimation of gait progress from low power sensors limited to one side of the lower body.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信