基于参数迁移学习的中医命名实体识别

Menglin Zhou, Kecun Gong
{"title":"基于参数迁移学习的中医命名实体识别","authors":"Menglin Zhou, Kecun Gong","doi":"10.1145/3579654.3579713","DOIUrl":null,"url":null,"abstract":"To reduce the dependence on the labeled data in the target domain of Chinese medical named entity recognition task, we studied the application of parameter transfer learning in Chinese medical named entity recognition. The method firstly combines the data of different domains with the target domains data for word embedding training, so as to achieve semantic information sharing at the representation layer. Secondly, the internal encoding layer parameters of the source domain model are transferred to the target domain model by training the source domain model. Finally, the parameter transfer is combined with the constructed weak label dataset to solve the inconsistent distribution of labels in target and source domains, which means the parameter transfer in decoding layer is achieved. The bottom-up parameter transfer of the neural network is achieved through the above steps. Experiment shows that the proposed method can successfully improve the recognition performance of the target domain model on small samples, and reduce the dependence of the target domain labeling data.","PeriodicalId":146783,"journal":{"name":"Proceedings of the 2022 5th International Conference on Algorithms, Computing and Artificial Intelligence","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chinese Medical Named Entity Recognition Based on Parameter Transfer Learning\",\"authors\":\"Menglin Zhou, Kecun Gong\",\"doi\":\"10.1145/3579654.3579713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To reduce the dependence on the labeled data in the target domain of Chinese medical named entity recognition task, we studied the application of parameter transfer learning in Chinese medical named entity recognition. The method firstly combines the data of different domains with the target domains data for word embedding training, so as to achieve semantic information sharing at the representation layer. Secondly, the internal encoding layer parameters of the source domain model are transferred to the target domain model by training the source domain model. Finally, the parameter transfer is combined with the constructed weak label dataset to solve the inconsistent distribution of labels in target and source domains, which means the parameter transfer in decoding layer is achieved. The bottom-up parameter transfer of the neural network is achieved through the above steps. Experiment shows that the proposed method can successfully improve the recognition performance of the target domain model on small samples, and reduce the dependence of the target domain labeling data.\",\"PeriodicalId\":146783,\"journal\":{\"name\":\"Proceedings of the 2022 5th International Conference on Algorithms, Computing and Artificial Intelligence\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 5th International Conference on Algorithms, Computing and Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3579654.3579713\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 5th International Conference on Algorithms, Computing and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3579654.3579713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了减少中药命名实体识别任务对目标域标记数据的依赖,研究了参数迁移学习在中药命名实体识别中的应用。该方法首先将不同领域的数据与目标领域的数据结合起来进行词嵌入训练,从而在表示层实现语义信息共享。其次,通过对源域模型的训练,将源域模型的内部编码层参数传递到目标域模型;最后,将参数传递与构建的弱标签数据集相结合,解决了目标域和源域标签分布不一致的问题,实现了解码层的参数传递。通过以上步骤实现神经网络自下而上的参数传递。实验表明,该方法能够成功地提高目标域模型对小样本的识别性能,降低对目标域标注数据的依赖性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chinese Medical Named Entity Recognition Based on Parameter Transfer Learning
To reduce the dependence on the labeled data in the target domain of Chinese medical named entity recognition task, we studied the application of parameter transfer learning in Chinese medical named entity recognition. The method firstly combines the data of different domains with the target domains data for word embedding training, so as to achieve semantic information sharing at the representation layer. Secondly, the internal encoding layer parameters of the source domain model are transferred to the target domain model by training the source domain model. Finally, the parameter transfer is combined with the constructed weak label dataset to solve the inconsistent distribution of labels in target and source domains, which means the parameter transfer in decoding layer is achieved. The bottom-up parameter transfer of the neural network is achieved through the above steps. Experiment shows that the proposed method can successfully improve the recognition performance of the target domain model on small samples, and reduce the dependence of the target domain labeling data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信