使用自组织地图的视频内容无监督学习

R. Gaborski, Yuheng Wang
{"title":"使用自组织地图的视频内容无监督学习","authors":"R. Gaborski, Yuheng Wang","doi":"10.1109/WNYIPW.2011.6122882","DOIUrl":null,"url":null,"abstract":"Video classification and retrieval is currently performed manually by individuals adding semantic annotation or creating a description of the videos. Current algorithmic methods often suffer from semantic gap between visual content and human interpretation. This paper proposes a biologically inspired system that automatically cluster videos based on visual attributes. For feature extraction, each video frame is processed with a multi-scale, multi-orientation Gabor filter. The resulting Gabor-filtered sub-band images are down-sampled on a regular grid to achieve global representation of the image. For clustering, the system employs an unsupervised, adaptive algorithm, the Self-Organizing Map, resulting in the automatic discovery of video content. SOM's are single layer, two-dimensional neural networks that use the delta update rule and competition based on-line learning scheme to learn internal relationship of input data without supervision. The baseline framework is deployed and evaluated using a small dataset. Initial system results reveal effective mapping of input video frames and topological regions on SOM.","PeriodicalId":257464,"journal":{"name":"2011 Western New York Image Processing Workshop","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Unsupervised learning of video content using Self-Organizing Maps\",\"authors\":\"R. Gaborski, Yuheng Wang\",\"doi\":\"10.1109/WNYIPW.2011.6122882\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Video classification and retrieval is currently performed manually by individuals adding semantic annotation or creating a description of the videos. Current algorithmic methods often suffer from semantic gap between visual content and human interpretation. This paper proposes a biologically inspired system that automatically cluster videos based on visual attributes. For feature extraction, each video frame is processed with a multi-scale, multi-orientation Gabor filter. The resulting Gabor-filtered sub-band images are down-sampled on a regular grid to achieve global representation of the image. For clustering, the system employs an unsupervised, adaptive algorithm, the Self-Organizing Map, resulting in the automatic discovery of video content. SOM's are single layer, two-dimensional neural networks that use the delta update rule and competition based on-line learning scheme to learn internal relationship of input data without supervision. The baseline framework is deployed and evaluated using a small dataset. Initial system results reveal effective mapping of input video frames and topological regions on SOM.\",\"PeriodicalId\":257464,\"journal\":{\"name\":\"2011 Western New York Image Processing Workshop\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Western New York Image Processing Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WNYIPW.2011.6122882\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Western New York Image Processing Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WNYIPW.2011.6122882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

目前,视频分类和检索是由个人手动添加语义注释或创建视频描述来完成的。目前的算法方法往往存在视觉内容与人类解释之间的语义差距。本文提出了一种基于视觉属性自动聚类视频的生物启发系统。对于特征提取,每个视频帧都使用多尺度、多方向Gabor滤波器进行处理。在规则网格上对经过gabor滤波的子带图像进行下采样,以实现图像的全局表示。对于聚类,系统采用了一种无监督的自适应算法,即自组织地图,从而自动发现视频内容。SOM是单层二维神经网络,它使用增量更新规则和基于竞争的在线学习方案来学习输入数据的内部关系,而无需监督。使用小型数据集部署和评估基线框架。初步的系统结果显示输入视频帧和拓扑区域在SOM上的有效映射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unsupervised learning of video content using Self-Organizing Maps
Video classification and retrieval is currently performed manually by individuals adding semantic annotation or creating a description of the videos. Current algorithmic methods often suffer from semantic gap between visual content and human interpretation. This paper proposes a biologically inspired system that automatically cluster videos based on visual attributes. For feature extraction, each video frame is processed with a multi-scale, multi-orientation Gabor filter. The resulting Gabor-filtered sub-band images are down-sampled on a regular grid to achieve global representation of the image. For clustering, the system employs an unsupervised, adaptive algorithm, the Self-Organizing Map, resulting in the automatic discovery of video content. SOM's are single layer, two-dimensional neural networks that use the delta update rule and competition based on-line learning scheme to learn internal relationship of input data without supervision. The baseline framework is deployed and evaluated using a small dataset. Initial system results reveal effective mapping of input video frames and topological regions on SOM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信