相平衡问题牛顿型方法的吸引盆地和临界曲线

G. Platt, F. S. Lobato, G. Libotte, F. D. M. Neto
{"title":"相平衡问题牛顿型方法的吸引盆地和临界曲线","authors":"G. Platt, F. S. Lobato, G. Libotte, F. D. M. Neto","doi":"10.1504/IJCSE.2020.110201","DOIUrl":null,"url":null,"abstract":"Many engineering problems are described by systems of nonlinear equations, which may exhibit multiple solutions, in a challenging situation for root-finding algorithms. The existence of several solutions may give rise to complex basins of attraction for the solutions in the algorithms, with severe influence in their convergence behavior. In this work, we explore the relationship of the basins of attractions with the critical curves (the locus of the singular points of the Jacobian of the system of equations) in a phase equilibrium problem in the plane with two solutions, namely the calculation of a double azeotrope in a binary mixture. The results indicate that the conjoint use of the basins of attraction and critical curves can be a useful tool to select the most suitable algorithm for a specific problem.","PeriodicalId":340410,"journal":{"name":"Int. J. Comput. Sci. Eng.","volume":"299 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Basins of attraction and critical curves for Newton-type methods in a phase equilibrium problem\",\"authors\":\"G. Platt, F. S. Lobato, G. Libotte, F. D. M. Neto\",\"doi\":\"10.1504/IJCSE.2020.110201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many engineering problems are described by systems of nonlinear equations, which may exhibit multiple solutions, in a challenging situation for root-finding algorithms. The existence of several solutions may give rise to complex basins of attraction for the solutions in the algorithms, with severe influence in their convergence behavior. In this work, we explore the relationship of the basins of attractions with the critical curves (the locus of the singular points of the Jacobian of the system of equations) in a phase equilibrium problem in the plane with two solutions, namely the calculation of a double azeotrope in a binary mixture. The results indicate that the conjoint use of the basins of attraction and critical curves can be a useful tool to select the most suitable algorithm for a specific problem.\",\"PeriodicalId\":340410,\"journal\":{\"name\":\"Int. J. Comput. Sci. Eng.\",\"volume\":\"299 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Comput. Sci. Eng.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJCSE.2020.110201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Sci. Eng.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJCSE.2020.110201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

许多工程问题都是用非线性方程组来描述的,这些方程组可能有多个解,这对寻根算法来说是一个挑战。多个解的存在会引起算法中解的复杂吸引盆地,严重影响算法的收敛性。在此工作中,我们探讨了具有两个解的平面相平衡问题中,即二元混合物中双共沸物的计算,引力盆地与临界曲线(方程组的雅可比矩阵的奇点轨迹)的关系。结果表明,引力盆地和临界曲线的联合使用可以为特定问题选择最合适的算法提供有用的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Basins of attraction and critical curves for Newton-type methods in a phase equilibrium problem
Many engineering problems are described by systems of nonlinear equations, which may exhibit multiple solutions, in a challenging situation for root-finding algorithms. The existence of several solutions may give rise to complex basins of attraction for the solutions in the algorithms, with severe influence in their convergence behavior. In this work, we explore the relationship of the basins of attractions with the critical curves (the locus of the singular points of the Jacobian of the system of equations) in a phase equilibrium problem in the plane with two solutions, namely the calculation of a double azeotrope in a binary mixture. The results indicate that the conjoint use of the basins of attraction and critical curves can be a useful tool to select the most suitable algorithm for a specific problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信