连续体编码

Ian T Foster
{"title":"连续体编码","authors":"Ian T Foster","doi":"10.1109/IPDPS.2019.00011","DOIUrl":null,"url":null,"abstract":"In 2001, as early high-speed networks were deployed, George Gilder observed that “when the network is as fast as the computer's internal links, the machine disintegrates across the net into a set of special purpose appliances.” Two decades later, our networks are 1,000 times faster, our appliances are increasingly specialized, and our computer systems are indeed disintegrating. As hardware acceleration overcomes speed-of-light delays, time and space merge into a computing continuum. Familiar questions like “where should I compute,” “for what workloads should I design computers,” and \"where should I place my computers” seem to allow for a myriad of new answers that are exhilarating but also daunting. Are there concepts that can help guide us as we design applications and computer systems in a world that is untethered from familiar landmarks like center, cloud, edge? I propose some ideas and report on experiments in coding the continuum.","PeriodicalId":403406,"journal":{"name":"2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","volume":"12 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Coding the Continuum\",\"authors\":\"Ian T Foster\",\"doi\":\"10.1109/IPDPS.2019.00011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 2001, as early high-speed networks were deployed, George Gilder observed that “when the network is as fast as the computer's internal links, the machine disintegrates across the net into a set of special purpose appliances.” Two decades later, our networks are 1,000 times faster, our appliances are increasingly specialized, and our computer systems are indeed disintegrating. As hardware acceleration overcomes speed-of-light delays, time and space merge into a computing continuum. Familiar questions like “where should I compute,” “for what workloads should I design computers,” and \\\"where should I place my computers” seem to allow for a myriad of new answers that are exhilarating but also daunting. Are there concepts that can help guide us as we design applications and computer systems in a world that is untethered from familiar landmarks like center, cloud, edge? I propose some ideas and report on experiments in coding the continuum.\",\"PeriodicalId\":403406,\"journal\":{\"name\":\"2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS)\",\"volume\":\"12 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPS.2019.00011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2019.00011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

2001年,当早期的高速网络部署时,乔治·吉尔德观察到“当网络的速度和计算机的内部连接一样快时,机器就会在网络上分解成一组特殊用途的设备。”二十年后,我们的网络速度快了1000倍,我们的设备越来越专业化,我们的计算机系统确实在瓦解。当硬件加速克服光速延迟时,时间和空间合并成一个计算连续体。熟悉的问题,如“我应该在哪里计算”,“我应该为什么样的工作负载设计计算机”,以及“我应该把计算机放在哪里”,似乎提供了无数令人兴奋但也令人生畏的新答案。当我们在一个不受中心、云、边缘等熟悉的标志束缚的世界中设计应用程序和计算机系统时,是否有一些概念可以帮助指导我们?我提出了一些想法,并报告了对连续体进行编码的实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coding the Continuum
In 2001, as early high-speed networks were deployed, George Gilder observed that “when the network is as fast as the computer's internal links, the machine disintegrates across the net into a set of special purpose appliances.” Two decades later, our networks are 1,000 times faster, our appliances are increasingly specialized, and our computer systems are indeed disintegrating. As hardware acceleration overcomes speed-of-light delays, time and space merge into a computing continuum. Familiar questions like “where should I compute,” “for what workloads should I design computers,” and "where should I place my computers” seem to allow for a myriad of new answers that are exhilarating but also daunting. Are there concepts that can help guide us as we design applications and computer systems in a world that is untethered from familiar landmarks like center, cloud, edge? I propose some ideas and report on experiments in coding the continuum.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信