紧急呼叫数据中的异常检测是智能紧急呼叫系统管理的第一步

P. Klement, V. Snás̃el
{"title":"紧急呼叫数据中的异常检测是智能紧急呼叫系统管理的第一步","authors":"P. Klement, V. Snás̃el","doi":"10.1109/INCOS.2009.35","DOIUrl":null,"url":null,"abstract":"A collaborative Emergency call taking information system in the Czech Republic processes calls on the European 112 emergency number. Amounts of various incident records are stored in its databases. The data can be used for mining spatial and temporal anomalies. When such an anomalous situation is detected so that the system could suffer from local or temporal performance decrease, either a human, or an automatic management module could take measures to reconfigure the system traffic and balance its load. In this paper we describe a method of knowledge discovery and visualization with respect to the emergency call taking information system database characteristics. The method is based on Kohonen Self Organizing Map (SOM) algorithm. Transformations of categorical attributes into numeric values are proposed to prepare training set appropriate for successful SOM generation.","PeriodicalId":145328,"journal":{"name":"2009 International Conference on Intelligent Networking and Collaborative Systems","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Anomaly Detection in Emergency Call Data The First Step to the Intelligent Emergency Call System Management\",\"authors\":\"P. Klement, V. Snás̃el\",\"doi\":\"10.1109/INCOS.2009.35\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A collaborative Emergency call taking information system in the Czech Republic processes calls on the European 112 emergency number. Amounts of various incident records are stored in its databases. The data can be used for mining spatial and temporal anomalies. When such an anomalous situation is detected so that the system could suffer from local or temporal performance decrease, either a human, or an automatic management module could take measures to reconfigure the system traffic and balance its load. In this paper we describe a method of knowledge discovery and visualization with respect to the emergency call taking information system database characteristics. The method is based on Kohonen Self Organizing Map (SOM) algorithm. Transformations of categorical attributes into numeric values are proposed to prepare training set appropriate for successful SOM generation.\",\"PeriodicalId\":145328,\"journal\":{\"name\":\"2009 International Conference on Intelligent Networking and Collaborative Systems\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Intelligent Networking and Collaborative Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INCOS.2009.35\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Intelligent Networking and Collaborative Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INCOS.2009.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

捷克共和国的协作紧急呼叫信息系统处理欧洲112紧急号码的呼叫。其数据库中存储了大量的各种事件记录。该数据可用于挖掘时空异常。当检测到这种异常情况时,系统可能会遭受本地或暂时的性能下降,人工或自动管理模块可以采取措施重新配置系统流量并平衡其负载。本文针对紧急呼叫信息系统数据库的特点,提出了一种知识发现与可视化的方法。该方法基于Kohonen自组织映射(SOM)算法。提出将分类属性转换为数值,以准备适合成功生成SOM的训练集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Anomaly Detection in Emergency Call Data The First Step to the Intelligent Emergency Call System Management
A collaborative Emergency call taking information system in the Czech Republic processes calls on the European 112 emergency number. Amounts of various incident records are stored in its databases. The data can be used for mining spatial and temporal anomalies. When such an anomalous situation is detected so that the system could suffer from local or temporal performance decrease, either a human, or an automatic management module could take measures to reconfigure the system traffic and balance its load. In this paper we describe a method of knowledge discovery and visualization with respect to the emergency call taking information system database characteristics. The method is based on Kohonen Self Organizing Map (SOM) algorithm. Transformations of categorical attributes into numeric values are proposed to prepare training set appropriate for successful SOM generation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信