基于门控存储器的片上监督学习策略

A. Rush, Alexander Jones, Eric Herrmann, R. Jha
{"title":"基于门控存储器的片上监督学习策略","authors":"A. Rush, Alexander Jones, Eric Herrmann, R. Jha","doi":"10.1109/NAECON46414.2019.9057906","DOIUrl":null,"url":null,"abstract":"We report a gated-ReRAM synaptic devices-based strategy for on-chip supervised learning. A vacancy-driven compact model for gated-ReRAM is presented and corroborated with experimental results. A supervised learning architecture is proposed that allows the feedback to be provided via gate terminal of gated-ReRAM to update weights in a highly parallel manner.","PeriodicalId":193529,"journal":{"name":"2019 IEEE National Aerospace and Electronics Conference (NAECON)","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Gated-ReRAM Based Strategies for On-Chip Supervised Learning\",\"authors\":\"A. Rush, Alexander Jones, Eric Herrmann, R. Jha\",\"doi\":\"10.1109/NAECON46414.2019.9057906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report a gated-ReRAM synaptic devices-based strategy for on-chip supervised learning. A vacancy-driven compact model for gated-ReRAM is presented and corroborated with experimental results. A supervised learning architecture is proposed that allows the feedback to be provided via gate terminal of gated-ReRAM to update weights in a highly parallel manner.\",\"PeriodicalId\":193529,\"journal\":{\"name\":\"2019 IEEE National Aerospace and Electronics Conference (NAECON)\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE National Aerospace and Electronics Conference (NAECON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAECON46414.2019.9057906\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE National Aerospace and Electronics Conference (NAECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAECON46414.2019.9057906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们报告了一种基于门控reram突触装置的片上监督学习策略。提出了一种空位驱动的门控reram紧凑模型,并与实验结果进行了验证。提出了一种监督学习架构,该架构允许通过门控reram的门端提供反馈,以高度并行的方式更新权值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gated-ReRAM Based Strategies for On-Chip Supervised Learning
We report a gated-ReRAM synaptic devices-based strategy for on-chip supervised learning. A vacancy-driven compact model for gated-ReRAM is presented and corroborated with experimental results. A supervised learning architecture is proposed that allows the feedback to be provided via gate terminal of gated-ReRAM to update weights in a highly parallel manner.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信