基于改进自组织特征映射神经网络的遥感图像无监督变化检测

Swarnajyoti Patra, Susmita K. Ghosh, Ashish Ghosh
{"title":"基于改进自组织特征映射神经网络的遥感图像无监督变化检测","authors":"Swarnajyoti Patra, Susmita K. Ghosh, Ashish Ghosh","doi":"10.1109/ICCTA.2007.128","DOIUrl":null,"url":null,"abstract":"In this paper we propose an unsupervised context-sensitive technique for change-detection in multitemporal remote sensing images. A modified self-organizing feature map neural network is used. Each spatial position of the input image corresponds to a neuron in the output layer and the number of neurons in the input layer is equal to the dimension of the input patterns. The network is updated depending on some threshold value and when the network converges status of output neurons depict the change-detection map. To select a suitable threshold for initialization of the network, a correlation based and an energy based criteria are suggested. Experimental results, carried out on two multispectral remote sensing images, confirm the effectiveness of the proposed approach","PeriodicalId":308247,"journal":{"name":"2007 International Conference on Computing: Theory and Applications (ICCTA'07)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Unsupervised Change Detection in Remote-Sensing Images Using Modified Self-Organizing Feature Map Neural Network\",\"authors\":\"Swarnajyoti Patra, Susmita K. Ghosh, Ashish Ghosh\",\"doi\":\"10.1109/ICCTA.2007.128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose an unsupervised context-sensitive technique for change-detection in multitemporal remote sensing images. A modified self-organizing feature map neural network is used. Each spatial position of the input image corresponds to a neuron in the output layer and the number of neurons in the input layer is equal to the dimension of the input patterns. The network is updated depending on some threshold value and when the network converges status of output neurons depict the change-detection map. To select a suitable threshold for initialization of the network, a correlation based and an energy based criteria are suggested. Experimental results, carried out on two multispectral remote sensing images, confirm the effectiveness of the proposed approach\",\"PeriodicalId\":308247,\"journal\":{\"name\":\"2007 International Conference on Computing: Theory and Applications (ICCTA'07)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Conference on Computing: Theory and Applications (ICCTA'07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCTA.2007.128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Computing: Theory and Applications (ICCTA'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCTA.2007.128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

本文提出了一种用于多时相遥感图像变化检测的无监督上下文敏感技术。采用一种改进的自组织特征映射神经网络。输入图像的每个空间位置对应于输出层中的一个神经元,输入层中的神经元数量等于输入模式的维数。网络根据某个阈值进行更新,当网络收敛时,输出神经元的状态描述变化检测图。为了选择合适的网络初始化阈值,提出了基于相关性和基于能量的准则。在两幅多光谱遥感图像上进行的实验结果验证了该方法的有效性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unsupervised Change Detection in Remote-Sensing Images Using Modified Self-Organizing Feature Map Neural Network
In this paper we propose an unsupervised context-sensitive technique for change-detection in multitemporal remote sensing images. A modified self-organizing feature map neural network is used. Each spatial position of the input image corresponds to a neuron in the output layer and the number of neurons in the input layer is equal to the dimension of the input patterns. The network is updated depending on some threshold value and when the network converges status of output neurons depict the change-detection map. To select a suitable threshold for initialization of the network, a correlation based and an energy based criteria are suggested. Experimental results, carried out on two multispectral remote sensing images, confirm the effectiveness of the proposed approach
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信