专家访谈的原因分析:分析地理嵌入的流量数据

Yalong Yang, Sarah Goodwin
{"title":"专家访谈的原因分析:分析地理嵌入的流量数据","authors":"Yalong Yang, Sarah Goodwin","doi":"10.1109/PacificVis.2019.00022","DOIUrl":null,"url":null,"abstract":"In this paper, we present our analysis of five expert interviews, each from a different application domain. Such analysis is crucial to understanding the real-world scenarios of analysing geographically-embedded flow data. The results of our analysis show that similar high-level tasks were conducted in different domains. To better describe the targets of these tasks, we proposed three flow-targets for analysing geographically-embedded flow data: single flow, total flow and regional flow.","PeriodicalId":208856,"journal":{"name":"2019 IEEE Pacific Visualization Symposium (PacificVis)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"What-Why Analysis of Expert Interviews: Analysing Geographically-Embedded Flow Data\",\"authors\":\"Yalong Yang, Sarah Goodwin\",\"doi\":\"10.1109/PacificVis.2019.00022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present our analysis of five expert interviews, each from a different application domain. Such analysis is crucial to understanding the real-world scenarios of analysing geographically-embedded flow data. The results of our analysis show that similar high-level tasks were conducted in different domains. To better describe the targets of these tasks, we proposed three flow-targets for analysing geographically-embedded flow data: single flow, total flow and regional flow.\",\"PeriodicalId\":208856,\"journal\":{\"name\":\"2019 IEEE Pacific Visualization Symposium (PacificVis)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Pacific Visualization Symposium (PacificVis)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PacificVis.2019.00022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Pacific Visualization Symposium (PacificVis)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PacificVis.2019.00022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在本文中,我们对来自不同应用领域的五个专家访谈进行了分析。这种分析对于理解分析地理位置嵌入的流量数据的实际情况至关重要。我们的分析结果表明,相似的高水平任务在不同的领域进行。为了更好地描述这些任务的目标,我们提出了用于分析地理嵌入流量数据的三个流量目标:单个流量、总流量和区域流量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
What-Why Analysis of Expert Interviews: Analysing Geographically-Embedded Flow Data
In this paper, we present our analysis of five expert interviews, each from a different application domain. Such analysis is crucial to understanding the real-world scenarios of analysing geographically-embedded flow data. The results of our analysis show that similar high-level tasks were conducted in different domains. To better describe the targets of these tasks, we proposed three flow-targets for analysing geographically-embedded flow data: single flow, total flow and regional flow.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信