{"title":"基于码调制视觉诱发电位的轻量级卷积神经网络","authors":"Jing Li, Zhihua Huang","doi":"10.1109/CISP-BMEI53629.2021.9624212","DOIUrl":null,"url":null,"abstract":"At present, personal identification based on code-modulated visual-evoked potentials is increasingly attracting people's attentions. Some convolutional neural networks (CNN) have been applied to recognize biomarkers based on code-modulated visual-evoked potentials (c-VEP) for personal identification. However, the ordinary CNNs encountered difficulties in grasping the basic characteristics of c-VEP to achieve a satisfactory performance. In this study, we proposed a lightweight convolutional neural network (LCNN) to recognize the c-VEP biomarkers in the tasks of personal identification. LCNN is composed of two parallel sub-nets, which correspond respectively to two profiles of a c-VEP sample and both include two blocks. The two blocks both contain a two-step convolutional sequence. The LCNN model is fitted by minimizing the categorical cross-entropy loss function. The goal of LCNN is to specifically handle the Electroencephalogram (EEG) data in the tasks of personal identification based on c-VEP. We recruited 20 subjects to participate in our personal identification experiments based on c-VEP. In the EEG dataset of the 20 subjects, LCNN reached the recognition accuracy of 99%. The result shows that the design of LCNN is suitable for recognizing the c-VEP biomarkers.","PeriodicalId":131256,"journal":{"name":"2021 14th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","volume":"28 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Lightweight Convolutional Neural Network for Personal Identification Based on Code-Modulated Visual-Evoked Potentials\",\"authors\":\"Jing Li, Zhihua Huang\",\"doi\":\"10.1109/CISP-BMEI53629.2021.9624212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"At present, personal identification based on code-modulated visual-evoked potentials is increasingly attracting people's attentions. Some convolutional neural networks (CNN) have been applied to recognize biomarkers based on code-modulated visual-evoked potentials (c-VEP) for personal identification. However, the ordinary CNNs encountered difficulties in grasping the basic characteristics of c-VEP to achieve a satisfactory performance. In this study, we proposed a lightweight convolutional neural network (LCNN) to recognize the c-VEP biomarkers in the tasks of personal identification. LCNN is composed of two parallel sub-nets, which correspond respectively to two profiles of a c-VEP sample and both include two blocks. The two blocks both contain a two-step convolutional sequence. The LCNN model is fitted by minimizing the categorical cross-entropy loss function. The goal of LCNN is to specifically handle the Electroencephalogram (EEG) data in the tasks of personal identification based on c-VEP. We recruited 20 subjects to participate in our personal identification experiments based on c-VEP. In the EEG dataset of the 20 subjects, LCNN reached the recognition accuracy of 99%. The result shows that the design of LCNN is suitable for recognizing the c-VEP biomarkers.\",\"PeriodicalId\":131256,\"journal\":{\"name\":\"2021 14th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)\",\"volume\":\"28 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 14th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISP-BMEI53629.2021.9624212\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 14th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISP-BMEI53629.2021.9624212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Lightweight Convolutional Neural Network for Personal Identification Based on Code-Modulated Visual-Evoked Potentials
At present, personal identification based on code-modulated visual-evoked potentials is increasingly attracting people's attentions. Some convolutional neural networks (CNN) have been applied to recognize biomarkers based on code-modulated visual-evoked potentials (c-VEP) for personal identification. However, the ordinary CNNs encountered difficulties in grasping the basic characteristics of c-VEP to achieve a satisfactory performance. In this study, we proposed a lightweight convolutional neural network (LCNN) to recognize the c-VEP biomarkers in the tasks of personal identification. LCNN is composed of two parallel sub-nets, which correspond respectively to two profiles of a c-VEP sample and both include two blocks. The two blocks both contain a two-step convolutional sequence. The LCNN model is fitted by minimizing the categorical cross-entropy loss function. The goal of LCNN is to specifically handle the Electroencephalogram (EEG) data in the tasks of personal identification based on c-VEP. We recruited 20 subjects to participate in our personal identification experiments based on c-VEP. In the EEG dataset of the 20 subjects, LCNN reached the recognition accuracy of 99%. The result shows that the design of LCNN is suitable for recognizing the c-VEP biomarkers.