{"title":"层状异质结构的引导再磁化研究","authors":"A. Korostil","doi":"10.11648/J.NANO.20190704.11","DOIUrl":null,"url":null,"abstract":"Field-guided magnetic dynamics in magnetic multilayer nanostructures involves interconnection of the control field with localized spin states, which can occur directly or indirectly depending on the nature of the field and spin polarization. At the control electromagnetic field, this interconnection can be directly induced by the photon-induced spin-flip processes and indirectly by a bias field during antiferromagnetic exchange relaxation. The control impact of electric field and electric current on the magnetic states occurs indirectly via the spin polarization and spin current in combination with the exchange interaction of these polarized spins with localized magnetic states. The corresponding description of the magnetic dynamics is based on the modified Landau-Lifshitz equation and spin diffusion equations, taking into account the spin Hall and the inverse spin Hall effects for systems with normal metal sublayers. In the case of the magnetic nanostructures with the Rashba spin-orbit interaction in interfaces, the electric field-controlled magnetization is realized via the Rashba field-induced spin polarization, and its exchange interaction with localized magnetic states. Corresponding description is based on a tight-binding model of spin-orbit-coupled electrons exchange coupled to the localized magnetic states.","PeriodicalId":298690,"journal":{"name":"American Journal of Nano Research and Applications","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Guided Remagnetization in Layered Anoheterostructures\",\"authors\":\"A. Korostil\",\"doi\":\"10.11648/J.NANO.20190704.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Field-guided magnetic dynamics in magnetic multilayer nanostructures involves interconnection of the control field with localized spin states, which can occur directly or indirectly depending on the nature of the field and spin polarization. At the control electromagnetic field, this interconnection can be directly induced by the photon-induced spin-flip processes and indirectly by a bias field during antiferromagnetic exchange relaxation. The control impact of electric field and electric current on the magnetic states occurs indirectly via the spin polarization and spin current in combination with the exchange interaction of these polarized spins with localized magnetic states. The corresponding description of the magnetic dynamics is based on the modified Landau-Lifshitz equation and spin diffusion equations, taking into account the spin Hall and the inverse spin Hall effects for systems with normal metal sublayers. In the case of the magnetic nanostructures with the Rashba spin-orbit interaction in interfaces, the electric field-controlled magnetization is realized via the Rashba field-induced spin polarization, and its exchange interaction with localized magnetic states. Corresponding description is based on a tight-binding model of spin-orbit-coupled electrons exchange coupled to the localized magnetic states.\",\"PeriodicalId\":298690,\"journal\":{\"name\":\"American Journal of Nano Research and Applications\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Nano Research and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.NANO.20190704.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Nano Research and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.NANO.20190704.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On Guided Remagnetization in Layered Anoheterostructures
Field-guided magnetic dynamics in magnetic multilayer nanostructures involves interconnection of the control field with localized spin states, which can occur directly or indirectly depending on the nature of the field and spin polarization. At the control electromagnetic field, this interconnection can be directly induced by the photon-induced spin-flip processes and indirectly by a bias field during antiferromagnetic exchange relaxation. The control impact of electric field and electric current on the magnetic states occurs indirectly via the spin polarization and spin current in combination with the exchange interaction of these polarized spins with localized magnetic states. The corresponding description of the magnetic dynamics is based on the modified Landau-Lifshitz equation and spin diffusion equations, taking into account the spin Hall and the inverse spin Hall effects for systems with normal metal sublayers. In the case of the magnetic nanostructures with the Rashba spin-orbit interaction in interfaces, the electric field-controlled magnetization is realized via the Rashba field-induced spin polarization, and its exchange interaction with localized magnetic states. Corresponding description is based on a tight-binding model of spin-orbit-coupled electrons exchange coupled to the localized magnetic states.