基于PDE耦合的多值图像增强

S. Bettahar, A. Stambouli, P. Lambert, A. Benoît
{"title":"基于PDE耦合的多值图像增强","authors":"S. Bettahar, A. Stambouli, P. Lambert, A. Benoît","doi":"10.5281/ZENODO.42385","DOIUrl":null,"url":null,"abstract":"In this paper, we present a new model for the enhancement of noisy and blurred multi-valued images. The proposed model is based on using single vectors of the gradient magnitude and the second derivatives as a manner to relate different colour components of the image. This model can be viewed as a generalization of Bettahar-Stambouli filter to multi-valued images. The proposed algorithm is more efficient than the mentioned filter and some previous works at colour images denoising and deblurring without creating false colours.","PeriodicalId":331889,"journal":{"name":"2011 19th European Signal Processing Conference","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Enhancement of multi-valued images using PDE coupling\",\"authors\":\"S. Bettahar, A. Stambouli, P. Lambert, A. Benoît\",\"doi\":\"10.5281/ZENODO.42385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a new model for the enhancement of noisy and blurred multi-valued images. The proposed model is based on using single vectors of the gradient magnitude and the second derivatives as a manner to relate different colour components of the image. This model can be viewed as a generalization of Bettahar-Stambouli filter to multi-valued images. The proposed algorithm is more efficient than the mentioned filter and some previous works at colour images denoising and deblurring without creating false colours.\",\"PeriodicalId\":331889,\"journal\":{\"name\":\"2011 19th European Signal Processing Conference\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 19th European Signal Processing Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/ZENODO.42385\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 19th European Signal Processing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.42385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种新的多值图像增强模型。所提出的模型是基于使用梯度幅度的单一矢量和二阶导数作为一种方式来关联图像的不同颜色成分。该模型可以看作是对多值图像的Bettahar-Stambouli滤波的推广。该算法在彩色图像去噪和去模糊方面比上述滤波器和一些先前的算法更有效,而且不会产生假色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancement of multi-valued images using PDE coupling
In this paper, we present a new model for the enhancement of noisy and blurred multi-valued images. The proposed model is based on using single vectors of the gradient magnitude and the second derivatives as a manner to relate different colour components of the image. This model can be viewed as a generalization of Bettahar-Stambouli filter to multi-valued images. The proposed algorithm is more efficient than the mentioned filter and some previous works at colour images denoising and deblurring without creating false colours.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信