从噪声数据中学习生物调控和信号网络的过渡模型

Deepika Vatsa, Sumeet Agarwal, A. Srinivasan
{"title":"从噪声数据中学习生物调控和信号网络的过渡模型","authors":"Deepika Vatsa, Sumeet Agarwal, A. Srinivasan","doi":"10.1145/2888451.2888469","DOIUrl":null,"url":null,"abstract":"In this paper, we present an extended 2-step probabilistic LGTS (PLGTS) transition system which aims to identify the network structure and stochastic nature of biological processes using time series data. This work is a step towards system identification in a noisy environment using transition systems. Here, the noise implies noise in transitions between states in the observed data. Interestingly, noise in the data helps in assisting system identification. Experimental results on synthetic data show that noise actually helps in understanding the system dynamics as well as constraining the solution space; thus helping to identify the most probable network structure for a given data set.","PeriodicalId":136431,"journal":{"name":"Proceedings of the 3rd IKDD Conference on Data Science, 2016","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Learning transition models of biological regulatory and signaling networks from noisy data\",\"authors\":\"Deepika Vatsa, Sumeet Agarwal, A. Srinivasan\",\"doi\":\"10.1145/2888451.2888469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present an extended 2-step probabilistic LGTS (PLGTS) transition system which aims to identify the network structure and stochastic nature of biological processes using time series data. This work is a step towards system identification in a noisy environment using transition systems. Here, the noise implies noise in transitions between states in the observed data. Interestingly, noise in the data helps in assisting system identification. Experimental results on synthetic data show that noise actually helps in understanding the system dynamics as well as constraining the solution space; thus helping to identify the most probable network structure for a given data set.\",\"PeriodicalId\":136431,\"journal\":{\"name\":\"Proceedings of the 3rd IKDD Conference on Data Science, 2016\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 3rd IKDD Conference on Data Science, 2016\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2888451.2888469\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd IKDD Conference on Data Science, 2016","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2888451.2888469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们提出了一个扩展的2步概率LGTS (PLGTS)转移系统,该系统旨在利用时间序列数据识别生物过程的网络结构和随机性。这项工作是向使用转换系统在噪声环境中进行系统识别迈出的一步。这里的噪声指的是观测数据中状态间转换的噪声。有趣的是,数据中的噪声有助于辅助系统识别。在合成数据上的实验结果表明,噪声不仅有助于理解系统动力学,而且约束了解空间;从而帮助识别给定数据集最可能的网络结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning transition models of biological regulatory and signaling networks from noisy data
In this paper, we present an extended 2-step probabilistic LGTS (PLGTS) transition system which aims to identify the network structure and stochastic nature of biological processes using time series data. This work is a step towards system identification in a noisy environment using transition systems. Here, the noise implies noise in transitions between states in the observed data. Interestingly, noise in the data helps in assisting system identification. Experimental results on synthetic data show that noise actually helps in understanding the system dynamics as well as constraining the solution space; thus helping to identify the most probable network structure for a given data set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信