估计模型与动态网络相互作用和未观察到的异质性

L. Corrado, Salvatore Di Novo
{"title":"估计模型与动态网络相互作用和未观察到的异质性","authors":"L. Corrado, Salvatore Di Novo","doi":"10.2139/ssrn.3229159","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an approach to estimate models with network interactions in the presence of individual unobserved heterogeneity. The latter may impact the formation of ties and/or exogenous effects, thereby undermining identification of the associated parameters. In a panel setting, we devise a way to cope with these sources of endogeneity by relying on observable variations. When exogenous effects are involved, one can control for unobserved heterogeneity by including time-averages of the endogenous variables. When unobserved individual traits affect the process of network formation, it is possible to explore the role of network statistics. We derive a 2SLS estimator in order to address simultaneity bias, relying on sources of variation provided by the product between successive powers of the network matrix and the matrix of exogenous covariates; we assess the performances of the method via a Monte Carlo exercise, considering various combination of models and different ranges of parameters for both network interactions and the social multiplier. We also separately assess the cases in which unobserved sources hit the network structure only or act on exogenous effects as well. Focusing on the former case, our approach may be also applied when a simple cross-section is available. More generally, it does not require full knowledge of the spectrum of agents' interactions.","PeriodicalId":416571,"journal":{"name":"CEIS: Centre for Economic & International Studies Working Paper Series","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating Models with Dynamic Network Interactions and Unobserved Heterogeneity\",\"authors\":\"L. Corrado, Salvatore Di Novo\",\"doi\":\"10.2139/ssrn.3229159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an approach to estimate models with network interactions in the presence of individual unobserved heterogeneity. The latter may impact the formation of ties and/or exogenous effects, thereby undermining identification of the associated parameters. In a panel setting, we devise a way to cope with these sources of endogeneity by relying on observable variations. When exogenous effects are involved, one can control for unobserved heterogeneity by including time-averages of the endogenous variables. When unobserved individual traits affect the process of network formation, it is possible to explore the role of network statistics. We derive a 2SLS estimator in order to address simultaneity bias, relying on sources of variation provided by the product between successive powers of the network matrix and the matrix of exogenous covariates; we assess the performances of the method via a Monte Carlo exercise, considering various combination of models and different ranges of parameters for both network interactions and the social multiplier. We also separately assess the cases in which unobserved sources hit the network structure only or act on exogenous effects as well. Focusing on the former case, our approach may be also applied when a simple cross-section is available. More generally, it does not require full knowledge of the spectrum of agents' interactions.\",\"PeriodicalId\":416571,\"journal\":{\"name\":\"CEIS: Centre for Economic & International Studies Working Paper Series\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CEIS: Centre for Economic & International Studies Working Paper Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3229159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CEIS: Centre for Economic & International Studies Working Paper Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3229159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种在个体未观察到的异质性存在的情况下估计具有网络相互作用的模型的方法。后者可能会影响关系的形成和/或外生效应,从而破坏相关参数的识别。在小组设置中,我们设计了一种方法,通过依赖可观察到的变化来应对这些内生性来源。当涉及外源效应时,可以通过包括内生变量的时间平均值来控制未观察到的异质性。当未观察到的个体特征影响网络形成过程时,就有可能探索网络统计的作用。我们推导了一个2SLS估计器,以解决同时性偏差,依赖于网络矩阵的连续幂和外生协变量矩阵之间的乘积提供的变异源;我们通过蒙特卡罗练习评估了该方法的性能,考虑了网络交互和社会乘数的各种模型组合和不同范围的参数。我们还单独评估了未观察到的源仅撞击网络结构或也对外生效应起作用的情况。着重于前一种情况,我们的方法也可以在简单的横截面可用时应用。更一般地说,它不需要完全了解代理相互作用的范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimating Models with Dynamic Network Interactions and Unobserved Heterogeneity
In this paper, we propose an approach to estimate models with network interactions in the presence of individual unobserved heterogeneity. The latter may impact the formation of ties and/or exogenous effects, thereby undermining identification of the associated parameters. In a panel setting, we devise a way to cope with these sources of endogeneity by relying on observable variations. When exogenous effects are involved, one can control for unobserved heterogeneity by including time-averages of the endogenous variables. When unobserved individual traits affect the process of network formation, it is possible to explore the role of network statistics. We derive a 2SLS estimator in order to address simultaneity bias, relying on sources of variation provided by the product between successive powers of the network matrix and the matrix of exogenous covariates; we assess the performances of the method via a Monte Carlo exercise, considering various combination of models and different ranges of parameters for both network interactions and the social multiplier. We also separately assess the cases in which unobserved sources hit the network structure only or act on exogenous effects as well. Focusing on the former case, our approach may be also applied when a simple cross-section is available. More generally, it does not require full knowledge of the spectrum of agents' interactions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信