论动力学规划的复杂性

J. Canny, B. Donald, J. Reif, P. Xavier
{"title":"论动力学规划的复杂性","authors":"J. Canny, B. Donald, J. Reif, P. Xavier","doi":"10.1109/SFCS.1988.21947","DOIUrl":null,"url":null,"abstract":"The following problem, is considered: given a robot system find a minimal-time trajectory from a start position and velocity to a goal position and velocity, while avoiding obstacles and respecting dynamic constraints on velocity and acceleration. The simplified case of a point mass under Newtonian mechanics together with velocity and acceleration bounds is considered. The point must be flown from a start to a goal, amid 2-D or 3-D polyhedral obstacles. While exact solutions to this problem are not known, the first provably good approximation algorithm is given and shown to run in polynomial time.","PeriodicalId":113255,"journal":{"name":"[Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"169","resultStr":"{\"title\":\"On the complexity of kinodynamic planning\",\"authors\":\"J. Canny, B. Donald, J. Reif, P. Xavier\",\"doi\":\"10.1109/SFCS.1988.21947\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The following problem, is considered: given a robot system find a minimal-time trajectory from a start position and velocity to a goal position and velocity, while avoiding obstacles and respecting dynamic constraints on velocity and acceleration. The simplified case of a point mass under Newtonian mechanics together with velocity and acceleration bounds is considered. The point must be flown from a start to a goal, amid 2-D or 3-D polyhedral obstacles. While exact solutions to this problem are not known, the first provably good approximation algorithm is given and shown to run in polynomial time.\",\"PeriodicalId\":113255,\"journal\":{\"name\":\"[Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"169\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFCS.1988.21947\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1988.21947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 169

摘要

考虑如下问题:给定一个机器人系统,在避开障碍物并尊重速度和加速度的动态约束的情况下,找到从起始位置和速度到目标位置和速度的最短时间轨迹。考虑了牛顿力学下质点的简化情况,并考虑了速度和加速度边界。在二维或三维多面体障碍中,点必须从起点飞到目标。虽然这个问题的精确解尚不清楚,但给出了第一个可证明的良好近似算法,并证明它在多项式时间内运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the complexity of kinodynamic planning
The following problem, is considered: given a robot system find a minimal-time trajectory from a start position and velocity to a goal position and velocity, while avoiding obstacles and respecting dynamic constraints on velocity and acceleration. The simplified case of a point mass under Newtonian mechanics together with velocity and acceleration bounds is considered. The point must be flown from a start to a goal, amid 2-D or 3-D polyhedral obstacles. While exact solutions to this problem are not known, the first provably good approximation algorithm is given and shown to run in polynomial time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信