{"title":"导论章:先进冷却技术简介","authors":"S. Murshed","doi":"10.5772/INTECHOPEN.82340","DOIUrl":null,"url":null,"abstract":"The smaller and faster based modern trend of manufacturing devices and equipment leads to dramatic increase in heat generation resulting in their higher failure rate and shorter longevity. For instance, the reduction of size of high-tech electronic devices and huge increase in the number of integrated components and subsequent increase in power density yielded enormous challenges for their fast and adequate cooling [1]. Since conventional cooling techniques are falling short in dealing with such high cooling demand, advanced and innovative cooling technologies are needed to meet the raising cooling demand of those modern devices, systems, and processes. In recent years, research and development in advanced cooling technologies as well as search for superior coolants have attracted tremendous interest worldwide and good progress has been made as numbers of new cooling systems as well as few new coolants have emerged [2, 3]. Recently, a feature on cooling technologies was published in technology report of BBC News where cooling technologies were also identified to be a red-hot sector [4]. While there is an urgent need to reduce (cool down) the global warming, the increasing cooling needs from modern devices, systems, and appliances as well as human comfort (like district heating and cooling) to be met with the advanced cooling technologies and coolants.","PeriodicalId":386786,"journal":{"name":"Advanced Cooling Technologies and Applications","volume":"253 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Introductory Chapter: A Brief Note on Advanced Cooling Technologies\",\"authors\":\"S. Murshed\",\"doi\":\"10.5772/INTECHOPEN.82340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The smaller and faster based modern trend of manufacturing devices and equipment leads to dramatic increase in heat generation resulting in their higher failure rate and shorter longevity. For instance, the reduction of size of high-tech electronic devices and huge increase in the number of integrated components and subsequent increase in power density yielded enormous challenges for their fast and adequate cooling [1]. Since conventional cooling techniques are falling short in dealing with such high cooling demand, advanced and innovative cooling technologies are needed to meet the raising cooling demand of those modern devices, systems, and processes. In recent years, research and development in advanced cooling technologies as well as search for superior coolants have attracted tremendous interest worldwide and good progress has been made as numbers of new cooling systems as well as few new coolants have emerged [2, 3]. Recently, a feature on cooling technologies was published in technology report of BBC News where cooling technologies were also identified to be a red-hot sector [4]. While there is an urgent need to reduce (cool down) the global warming, the increasing cooling needs from modern devices, systems, and appliances as well as human comfort (like district heating and cooling) to be met with the advanced cooling technologies and coolants.\",\"PeriodicalId\":386786,\"journal\":{\"name\":\"Advanced Cooling Technologies and Applications\",\"volume\":\"253 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Cooling Technologies and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.82340\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Cooling Technologies and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.82340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Introductory Chapter: A Brief Note on Advanced Cooling Technologies
The smaller and faster based modern trend of manufacturing devices and equipment leads to dramatic increase in heat generation resulting in their higher failure rate and shorter longevity. For instance, the reduction of size of high-tech electronic devices and huge increase in the number of integrated components and subsequent increase in power density yielded enormous challenges for their fast and adequate cooling [1]. Since conventional cooling techniques are falling short in dealing with such high cooling demand, advanced and innovative cooling technologies are needed to meet the raising cooling demand of those modern devices, systems, and processes. In recent years, research and development in advanced cooling technologies as well as search for superior coolants have attracted tremendous interest worldwide and good progress has been made as numbers of new cooling systems as well as few new coolants have emerged [2, 3]. Recently, a feature on cooling technologies was published in technology report of BBC News where cooling technologies were also identified to be a red-hot sector [4]. While there is an urgent need to reduce (cool down) the global warming, the increasing cooling needs from modern devices, systems, and appliances as well as human comfort (like district heating and cooling) to be met with the advanced cooling technologies and coolants.