用于监视的阴影自主和自适应学习

H. Celik, Andoni Martin Ortigosa, A. Hanjalic, E. Hendriks
{"title":"用于监视的阴影自主和自适应学习","authors":"H. Celik, Andoni Martin Ortigosa, A. Hanjalic, E. Hendriks","doi":"10.1109/WIAMIS.2008.26","DOIUrl":null,"url":null,"abstract":"Object detection is a critical step in automating the monitoring and surveillance tasks. To maximize its reliability, robust algorithms are needed to separate real objects from moving shadows. In this paper we propose a framework for detecting moving shadows caused by moving objects in video, which first learns autonomously and on-line the characteristic features of typical shadow pixels at various parts of the observed scene. The collected knowledge is then used to calibrate itself for the given scene, and to identify shadow pixels in subsequent frames. Experiments show that our system has a good performance, while being more adaptable and using only brightness information.","PeriodicalId":325635,"journal":{"name":"2008 Ninth International Workshop on Image Analysis for Multimedia Interactive Services","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Autonomous and Adaptive Learning of Shadows for Surveillance\",\"authors\":\"H. Celik, Andoni Martin Ortigosa, A. Hanjalic, E. Hendriks\",\"doi\":\"10.1109/WIAMIS.2008.26\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Object detection is a critical step in automating the monitoring and surveillance tasks. To maximize its reliability, robust algorithms are needed to separate real objects from moving shadows. In this paper we propose a framework for detecting moving shadows caused by moving objects in video, which first learns autonomously and on-line the characteristic features of typical shadow pixels at various parts of the observed scene. The collected knowledge is then used to calibrate itself for the given scene, and to identify shadow pixels in subsequent frames. Experiments show that our system has a good performance, while being more adaptable and using only brightness information.\",\"PeriodicalId\":325635,\"journal\":{\"name\":\"2008 Ninth International Workshop on Image Analysis for Multimedia Interactive Services\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Ninth International Workshop on Image Analysis for Multimedia Interactive Services\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WIAMIS.2008.26\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Ninth International Workshop on Image Analysis for Multimedia Interactive Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIAMIS.2008.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

目标检测是实现监控任务自动化的关键步骤。为了最大限度地提高其可靠性,需要稳健的算法将真实物体与移动阴影分离开来。本文提出了一种检测视频中由运动物体引起的运动阴影的框架,该框架首先在线自主学习观察场景中不同部分的典型阴影像素的特征特征。然后,收集到的知识用于为给定场景校准自身,并在随后的帧中识别阴影像素。实验结果表明,该系统具有良好的性能,同时具有较强的适应性和仅使用亮度信息的特点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Autonomous and Adaptive Learning of Shadows for Surveillance
Object detection is a critical step in automating the monitoring and surveillance tasks. To maximize its reliability, robust algorithms are needed to separate real objects from moving shadows. In this paper we propose a framework for detecting moving shadows caused by moving objects in video, which first learns autonomously and on-line the characteristic features of typical shadow pixels at various parts of the observed scene. The collected knowledge is then used to calibrate itself for the given scene, and to identify shadow pixels in subsequent frames. Experiments show that our system has a good performance, while being more adaptable and using only brightness information.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信