{"title":"LinReTraCe的代码库1.1版","authors":"Matthias Pickem, Emanuele Maggio, J. M. Tomczak","doi":"10.21468/scipostphyscodeb.16-r1.1","DOIUrl":null,"url":null,"abstract":"We describe the “Linear Response Transport Centre” (LinReTraCe), a package for the simulation of transport properties of solids. LinReTraCe captures quantum (in)coherence effects beyond semi-classical Boltzmann techniques, while incurring similar numerical costs. The enabling algorithmic innovation is a semi-analytical evaluation of Kubo formulae for resistivities and the coefficients of Hall, Seebeck and Nernst. We detail the program’s architecture, its interface and usage with electronic-structure packages such as WIEN2k, VASP, and Wannier90, as well as versatile tight-binding settings.","PeriodicalId":430271,"journal":{"name":"SciPost Physics Codebases","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Codebase release 1.1 for LinReTraCe\",\"authors\":\"Matthias Pickem, Emanuele Maggio, J. M. Tomczak\",\"doi\":\"10.21468/scipostphyscodeb.16-r1.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe the “Linear Response Transport Centre” (LinReTraCe), a package for the simulation of transport properties of solids. LinReTraCe captures quantum (in)coherence effects beyond semi-classical Boltzmann techniques, while incurring similar numerical costs. The enabling algorithmic innovation is a semi-analytical evaluation of Kubo formulae for resistivities and the coefficients of Hall, Seebeck and Nernst. We detail the program’s architecture, its interface and usage with electronic-structure packages such as WIEN2k, VASP, and Wannier90, as well as versatile tight-binding settings.\",\"PeriodicalId\":430271,\"journal\":{\"name\":\"SciPost Physics Codebases\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SciPost Physics Codebases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21468/scipostphyscodeb.16-r1.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SciPost Physics Codebases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21468/scipostphyscodeb.16-r1.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We describe the “Linear Response Transport Centre” (LinReTraCe), a package for the simulation of transport properties of solids. LinReTraCe captures quantum (in)coherence effects beyond semi-classical Boltzmann techniques, while incurring similar numerical costs. The enabling algorithmic innovation is a semi-analytical evaluation of Kubo formulae for resistivities and the coefficients of Hall, Seebeck and Nernst. We detail the program’s architecture, its interface and usage with electronic-structure packages such as WIEN2k, VASP, and Wannier90, as well as versatile tight-binding settings.