基于小波去噪的太阳辐照度预报

Lingyu Lyu, M. Kantardzic, Elaheh Arabmakki
{"title":"基于小波去噪的太阳辐照度预报","authors":"Lingyu Lyu, M. Kantardzic, Elaheh Arabmakki","doi":"10.1109/CIES.2014.7011839","DOIUrl":null,"url":null,"abstract":"Predicting of global solar irradiance is very important in applications using solar energy resources. This research introduces a new methodology to estimate the solar irradiance. Denoising based on wavelet transformation as a preprocessing step is applied to the time series meteorological data. Artificial neural network and support vector machine are then used to make predictive model on Global Horizontal Irradiance (GHI) for the three cities located in California, Kentucky and New York, individually. Detailed experimental analysis is presented for the developed predictive models and comparisons with existing methodologies show that the proposed approach gives a significant improvement with increased generality.","PeriodicalId":287779,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence for Engineering Solutions (CIES)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Solar irradiance forecasting by using wavelet based denoising\",\"authors\":\"Lingyu Lyu, M. Kantardzic, Elaheh Arabmakki\",\"doi\":\"10.1109/CIES.2014.7011839\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Predicting of global solar irradiance is very important in applications using solar energy resources. This research introduces a new methodology to estimate the solar irradiance. Denoising based on wavelet transformation as a preprocessing step is applied to the time series meteorological data. Artificial neural network and support vector machine are then used to make predictive model on Global Horizontal Irradiance (GHI) for the three cities located in California, Kentucky and New York, individually. Detailed experimental analysis is presented for the developed predictive models and comparisons with existing methodologies show that the proposed approach gives a significant improvement with increased generality.\",\"PeriodicalId\":287779,\"journal\":{\"name\":\"2014 IEEE Symposium on Computational Intelligence for Engineering Solutions (CIES)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Symposium on Computational Intelligence for Engineering Solutions (CIES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIES.2014.7011839\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence for Engineering Solutions (CIES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIES.2014.7011839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

全球太阳辐照度的预测在太阳能资源的应用中具有重要意义。本研究提出了一种估算太阳辐照度的新方法。将基于小波变换的去噪作为预处理步骤应用于时间序列气象数据。然后利用人工神经网络和支持向量机分别对位于加利福尼亚州、肯塔基州和纽约州的三个城市的全球水平辐照度(GHI)进行预测模型。对所建立的预测模型进行了详细的实验分析,并与现有方法进行了比较,表明所提出的方法具有显著的改进,通用性增强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solar irradiance forecasting by using wavelet based denoising
Predicting of global solar irradiance is very important in applications using solar energy resources. This research introduces a new methodology to estimate the solar irradiance. Denoising based on wavelet transformation as a preprocessing step is applied to the time series meteorological data. Artificial neural network and support vector machine are then used to make predictive model on Global Horizontal Irradiance (GHI) for the three cities located in California, Kentucky and New York, individually. Detailed experimental analysis is presented for the developed predictive models and comparisons with existing methodologies show that the proposed approach gives a significant improvement with increased generality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信