基于机器视觉的孟加拉钞票实时识别和分类自动系统。

R. Sajal, M. Kamruzzaman, F.A. Jewel
{"title":"基于机器视觉的孟加拉钞票实时识别和分类自动系统。","authors":"R. Sajal, M. Kamruzzaman, F.A. Jewel","doi":"10.1109/ICCITECHN.2008.4803060","DOIUrl":null,"url":null,"abstract":"This paper presents an efficient machine vision algorithm for real time image analysis and recognition of different features of Bangladeshi bank notes by using an automatic banknotes sorting system. The features recognized by this algorithm include denominations, orientations and sides of the bank notes. In a mechatronic system the Bangladeshi bank notes are fed together. The system draws the notes one by one and gets their images using a CCD sensor from a specific side. Then the system determines the denomination, orientation and side of the bank notes by analyzing the images grabbed by the CCD sensor. The average recognition speed is 8 to 9 bank notes per second and the rate of success is 100% for the banknotes having no extremely fatal damage.","PeriodicalId":335795,"journal":{"name":"2008 11th International Conference on Computer and Information Technology","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"A machine vision based automatic system for real time recognition and sorting of Bangladeshi bank notes.\",\"authors\":\"R. Sajal, M. Kamruzzaman, F.A. Jewel\",\"doi\":\"10.1109/ICCITECHN.2008.4803060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an efficient machine vision algorithm for real time image analysis and recognition of different features of Bangladeshi bank notes by using an automatic banknotes sorting system. The features recognized by this algorithm include denominations, orientations and sides of the bank notes. In a mechatronic system the Bangladeshi bank notes are fed together. The system draws the notes one by one and gets their images using a CCD sensor from a specific side. Then the system determines the denomination, orientation and side of the bank notes by analyzing the images grabbed by the CCD sensor. The average recognition speed is 8 to 9 bank notes per second and the rate of success is 100% for the banknotes having no extremely fatal damage.\",\"PeriodicalId\":335795,\"journal\":{\"name\":\"2008 11th International Conference on Computer and Information Technology\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 11th International Conference on Computer and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCITECHN.2008.4803060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 11th International Conference on Computer and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCITECHN.2008.4803060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

本文提出了一种有效的机器视觉算法,利用自动钞票分拣系统对孟加拉钞票的不同特征进行实时图像分析和识别。该算法识别的特征包括钞票的面额、方向和侧面。在一个机电一体化系统中,孟加拉国的钞票被一起输入。该系统一个一个地绘制音符,并使用CCD传感器从特定的侧面获取它们的图像。然后系统通过分析CCD传感器采集到的图像来确定钞票的面额、方向和侧面。平均识别速度为每秒8至9张钞票,对于没有极端致命损坏的钞票,成功率为100%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A machine vision based automatic system for real time recognition and sorting of Bangladeshi bank notes.
This paper presents an efficient machine vision algorithm for real time image analysis and recognition of different features of Bangladeshi bank notes by using an automatic banknotes sorting system. The features recognized by this algorithm include denominations, orientations and sides of the bank notes. In a mechatronic system the Bangladeshi bank notes are fed together. The system draws the notes one by one and gets their images using a CCD sensor from a specific side. Then the system determines the denomination, orientation and side of the bank notes by analyzing the images grabbed by the CCD sensor. The average recognition speed is 8 to 9 bank notes per second and the rate of success is 100% for the banknotes having no extremely fatal damage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信