期末考试前预测学生成绩:基于回归的方法

M. A. Ma'sum
{"title":"期末考试前预测学生成绩:基于回归的方法","authors":"M. A. Ma'sum","doi":"10.1109/ICITE54466.2022.9759885","DOIUrl":null,"url":null,"abstract":"An early prediction of student achievement on a course is an important instrument to forecast student accomplishment in the learning process. Besides, it is also functioned to help the students who might be failed. In this study, we proposed a regression-based early prediction of student achievement. The prediction system utilized the data from last semester to predict the final score of the students in the current semester. The proposed approach was tested in two scenarios. First, predicting the final score directly and the second is predicting the final exam score continued by final score calculation by using predefined formula. The experiment result shows that overall, the second scenario produces a better result than the first scenario. The SVR-Linear achieves the highest performance in the first scenario with 3.56 MAE, 0.048 MAPE, 17.63 MSE, 4.2 RMSE, and 0.781 R-squared. SVR-RBF achieves the highest performance in the second scenario with 3.0 MAE, 0.043 MAPE, 13.05 MSE, 3.6 RMSE, and 0.838 R-squared.","PeriodicalId":123775,"journal":{"name":"2022 2nd International Conference on Information Technology and Education (ICIT&E)","volume":"164 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting Student Achievement before Final Exam: A Regression-Based Approach\",\"authors\":\"M. A. Ma'sum\",\"doi\":\"10.1109/ICITE54466.2022.9759885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An early prediction of student achievement on a course is an important instrument to forecast student accomplishment in the learning process. Besides, it is also functioned to help the students who might be failed. In this study, we proposed a regression-based early prediction of student achievement. The prediction system utilized the data from last semester to predict the final score of the students in the current semester. The proposed approach was tested in two scenarios. First, predicting the final score directly and the second is predicting the final exam score continued by final score calculation by using predefined formula. The experiment result shows that overall, the second scenario produces a better result than the first scenario. The SVR-Linear achieves the highest performance in the first scenario with 3.56 MAE, 0.048 MAPE, 17.63 MSE, 4.2 RMSE, and 0.781 R-squared. SVR-RBF achieves the highest performance in the second scenario with 3.0 MAE, 0.043 MAPE, 13.05 MSE, 3.6 RMSE, and 0.838 R-squared.\",\"PeriodicalId\":123775,\"journal\":{\"name\":\"2022 2nd International Conference on Information Technology and Education (ICIT&E)\",\"volume\":\"164 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 2nd International Conference on Information Technology and Education (ICIT&E)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICITE54466.2022.9759885\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 2nd International Conference on Information Technology and Education (ICIT&E)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITE54466.2022.9759885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对学生学习成绩的早期预测是预测学生在学习过程中的成就的重要手段。此外,它还可以帮助那些可能会失败的学生。在本研究中,我们提出了一个基于回归的学生成绩早期预测方法。预测系统利用上学期的数据来预测本学期学生的最终成绩。提出的方法在两个场景中进行了测试。第一种是直接预测期末成绩,第二种是通过预定义公式计算期末成绩继续预测期末考试成绩。实验结果表明,总体而言,第二种方案比第一种方案产生更好的结果。SVR-Linear在第一种情况下实现了最高的性能,MAE为3.56,MAPE为0.048,MSE为17.63,RMSE为4.2,r方为0.781。在第二种情况下,SVR-RBF获得了最高的性能,MAE为3.0,MAPE为0.043,MSE为13.05,RMSE为3.6,R-squared为0.838。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Student Achievement before Final Exam: A Regression-Based Approach
An early prediction of student achievement on a course is an important instrument to forecast student accomplishment in the learning process. Besides, it is also functioned to help the students who might be failed. In this study, we proposed a regression-based early prediction of student achievement. The prediction system utilized the data from last semester to predict the final score of the students in the current semester. The proposed approach was tested in two scenarios. First, predicting the final score directly and the second is predicting the final exam score continued by final score calculation by using predefined formula. The experiment result shows that overall, the second scenario produces a better result than the first scenario. The SVR-Linear achieves the highest performance in the first scenario with 3.56 MAE, 0.048 MAPE, 17.63 MSE, 4.2 RMSE, and 0.781 R-squared. SVR-RBF achieves the highest performance in the second scenario with 3.0 MAE, 0.043 MAPE, 13.05 MSE, 3.6 RMSE, and 0.838 R-squared.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信