基于递归神经网络的汽车发动机怠速控制

G. Puskorius, L. Feldkamp
{"title":"基于递归神经网络的汽车发动机怠速控制","authors":"G. Puskorius, L. Feldkamp","doi":"10.23919/ACC.1993.4792864","DOIUrl":null,"url":null,"abstract":"This paper describes the development of recurrent neural network controllers for an automotive engine idle speed control (ISC) problem. Engine ISC is a difficult problem because of troublesome characteristics such as severe process nonlinearities, variable time delays, time-varying process dynamics and unobservable system states and disturbances. We demonstrate that recurrent neural network controllers can be trained to handle these difficulties gracefully while achieving good regulator performance for a representative model of 4-cylinder, 1.6 liter engine. Empirical results clearly illustrate that neural network controllers with relatively large amounts of internal feedback provide more robust performance for the ISC problem than do neural network controllers that are static or contain limited internal recurrent connections.","PeriodicalId":162700,"journal":{"name":"1993 American Control Conference","volume":"12 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"Automotive Engine Idle Speed Control with Recurrent Neural Networks\",\"authors\":\"G. Puskorius, L. Feldkamp\",\"doi\":\"10.23919/ACC.1993.4792864\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the development of recurrent neural network controllers for an automotive engine idle speed control (ISC) problem. Engine ISC is a difficult problem because of troublesome characteristics such as severe process nonlinearities, variable time delays, time-varying process dynamics and unobservable system states and disturbances. We demonstrate that recurrent neural network controllers can be trained to handle these difficulties gracefully while achieving good regulator performance for a representative model of 4-cylinder, 1.6 liter engine. Empirical results clearly illustrate that neural network controllers with relatively large amounts of internal feedback provide more robust performance for the ISC problem than do neural network controllers that are static or contain limited internal recurrent connections.\",\"PeriodicalId\":162700,\"journal\":{\"name\":\"1993 American Control Conference\",\"volume\":\"12 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1993 American Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ACC.1993.4792864\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1993 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC.1993.4792864","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

摘要

本文介绍了用于汽车发动机怠速控制问题的递归神经网络控制器的发展。发动机ISC具有严重的过程非线性、变时滞、时变过程动力学和不可观测的系统状态和扰动等特点,是一个难题。我们证明,循环神经网络控制器可以训练来优雅地处理这些困难,同时为一个代表性的4缸1.6升发动机模型实现良好的调节器性能。经验结果清楚地表明,与静态或包含有限内部循环连接的神经网络控制器相比,具有相对大量内部反馈的神经网络控制器为ISC问题提供了更强大的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automotive Engine Idle Speed Control with Recurrent Neural Networks
This paper describes the development of recurrent neural network controllers for an automotive engine idle speed control (ISC) problem. Engine ISC is a difficult problem because of troublesome characteristics such as severe process nonlinearities, variable time delays, time-varying process dynamics and unobservable system states and disturbances. We demonstrate that recurrent neural network controllers can be trained to handle these difficulties gracefully while achieving good regulator performance for a representative model of 4-cylinder, 1.6 liter engine. Empirical results clearly illustrate that neural network controllers with relatively large amounts of internal feedback provide more robust performance for the ISC problem than do neural network controllers that are static or contain limited internal recurrent connections.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信