可扩展自集成系统的层次自我意识和权限

A. Diaconescu, Barry Porter, Roberto Rodrigues Filho, Evangelos Pournaras
{"title":"可扩展自集成系统的层次自我意识和权限","authors":"A. Diaconescu, Barry Porter, Roberto Rodrigues Filho, Evangelos Pournaras","doi":"10.1109/FAS-W.2018.00043","DOIUrl":null,"url":null,"abstract":"System self-integration from open sets of components provides the basis for open adaptability to unpredictable environments. Hierarchical architectures are essential for enabling such systems to scale, as they allow to compromise between processing detailed knowledge in parallel and coordinating parallel processes from a more abstract viewpoint; recursively. This position paper aims to bring to the fore the following key design aspect of such hierarchical systems: how should the authority of decision and action be assigned across hierarchical levels, with respect to the self-awareness capabilities of these levels, The difficulty lays in that all levels lack knowledge, which may be key to certain decisions, because lower levels have detailed knowledge but within a narrow scope (good for local customisation), and higher levels have a broader scope but no details (good for global coordination). We highlight the most obvious authority schemes available and discuss their advantages and shortcomings: top-down, bottom-up, and iterative (yoyo). We discuss three detailed application examples from our previous work on hierarchical systems, pointing-out the knowledge and authority schemes employed and the possible alternatives. This provides a basis for offering system designers the necessary understanding and tools for taking the appropriate decisions with respect to the distribution of self-awareness capabilities and authority of decision and action across hierarchical system levels.","PeriodicalId":164903,"journal":{"name":"2018 IEEE 3rd International Workshops on Foundations and Applications of Self* Systems (FAS*W)","volume":"330 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Hierarchical Self-Awareness and Authority for Scalable Self-Integrating Systems\",\"authors\":\"A. Diaconescu, Barry Porter, Roberto Rodrigues Filho, Evangelos Pournaras\",\"doi\":\"10.1109/FAS-W.2018.00043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"System self-integration from open sets of components provides the basis for open adaptability to unpredictable environments. Hierarchical architectures are essential for enabling such systems to scale, as they allow to compromise between processing detailed knowledge in parallel and coordinating parallel processes from a more abstract viewpoint; recursively. This position paper aims to bring to the fore the following key design aspect of such hierarchical systems: how should the authority of decision and action be assigned across hierarchical levels, with respect to the self-awareness capabilities of these levels, The difficulty lays in that all levels lack knowledge, which may be key to certain decisions, because lower levels have detailed knowledge but within a narrow scope (good for local customisation), and higher levels have a broader scope but no details (good for global coordination). We highlight the most obvious authority schemes available and discuss their advantages and shortcomings: top-down, bottom-up, and iterative (yoyo). We discuss three detailed application examples from our previous work on hierarchical systems, pointing-out the knowledge and authority schemes employed and the possible alternatives. This provides a basis for offering system designers the necessary understanding and tools for taking the appropriate decisions with respect to the distribution of self-awareness capabilities and authority of decision and action across hierarchical system levels.\",\"PeriodicalId\":164903,\"journal\":{\"name\":\"2018 IEEE 3rd International Workshops on Foundations and Applications of Self* Systems (FAS*W)\",\"volume\":\"330 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 3rd International Workshops on Foundations and Applications of Self* Systems (FAS*W)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FAS-W.2018.00043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 3rd International Workshops on Foundations and Applications of Self* Systems (FAS*W)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FAS-W.2018.00043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

来自开放组件集的系统自集成为对不可预测环境的开放适应性提供了基础。分层架构对于使此类系统能够扩展至关重要,因为它们允许在并行处理详细知识和从更抽象的角度协调并行过程之间达成妥协;递归。本立场文件旨在突出这种分层系统的以下关键设计方面:关于这些层次的自我意识能力,决策和行动的权力应该如何跨层次分配?困难在于所有层次都缺乏知识,这可能是某些决策的关键,因为较低层次有详细的知识,但在一个狭窄的范围内(有利于本地定制),较高层次有更广泛的范围,但没有细节(有利于全球协调)。我们强调了可用的最明显的授权方案,并讨论了它们的优点和缺点:自顶向下、自底向上和迭代(溜溜球)。我们讨论了三个详细的应用实例,从我们以前的工作在层次系统,指出所采用的知识和权力方案和可能的替代方案。这提供了一个基础,为系统设计者提供必要的理解和工具,以便根据自我意识能力的分布以及跨层次系统级别的决策和行动的权威做出适当的决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hierarchical Self-Awareness and Authority for Scalable Self-Integrating Systems
System self-integration from open sets of components provides the basis for open adaptability to unpredictable environments. Hierarchical architectures are essential for enabling such systems to scale, as they allow to compromise between processing detailed knowledge in parallel and coordinating parallel processes from a more abstract viewpoint; recursively. This position paper aims to bring to the fore the following key design aspect of such hierarchical systems: how should the authority of decision and action be assigned across hierarchical levels, with respect to the self-awareness capabilities of these levels, The difficulty lays in that all levels lack knowledge, which may be key to certain decisions, because lower levels have detailed knowledge but within a narrow scope (good for local customisation), and higher levels have a broader scope but no details (good for global coordination). We highlight the most obvious authority schemes available and discuss their advantages and shortcomings: top-down, bottom-up, and iterative (yoyo). We discuss three detailed application examples from our previous work on hierarchical systems, pointing-out the knowledge and authority schemes employed and the possible alternatives. This provides a basis for offering system designers the necessary understanding and tools for taking the appropriate decisions with respect to the distribution of self-awareness capabilities and authority of decision and action across hierarchical system levels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信