基于和谐搜索法的ANFIS癫痫脑电信号分类

Jing Wang, X. Gao, J. Tanskanen, Ping Guo
{"title":"基于和谐搜索法的ANFIS癫痫脑电信号分类","authors":"Jing Wang, X. Gao, J. Tanskanen, Ping Guo","doi":"10.1109/CIS.2012.159","DOIUrl":null,"url":null,"abstract":"In this paper, the Adaptive Neuro-Fuzzy Inference System (ANFIS) is used for the classification of the epileptic electroencephalogram (EEG) signals. The ANFIS combines the adaptation capability of the neural networks and the fuzzy logic-based qualitative approach together. A given input/output data set is deployed to construct a fuzzy inference system, whose membership function parameters are trained using a back propagation algorithm in combination with a least squares method. However, the training method sometimes may lead to local optima. We here propose a new strategy of hybrid training algorithm based on the fusion of the ANFIS and Harmony Search (HS), HS-ANFIS, which is adopted to tune all the parameters of the ANFIS. The validity of our method is verified by numerical experiments.","PeriodicalId":294394,"journal":{"name":"2012 Eighth International Conference on Computational Intelligence and Security","volume":"58 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Epileptic EEG Signal Classification with ANFIS Based on Harmony Search Method\",\"authors\":\"Jing Wang, X. Gao, J. Tanskanen, Ping Guo\",\"doi\":\"10.1109/CIS.2012.159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the Adaptive Neuro-Fuzzy Inference System (ANFIS) is used for the classification of the epileptic electroencephalogram (EEG) signals. The ANFIS combines the adaptation capability of the neural networks and the fuzzy logic-based qualitative approach together. A given input/output data set is deployed to construct a fuzzy inference system, whose membership function parameters are trained using a back propagation algorithm in combination with a least squares method. However, the training method sometimes may lead to local optima. We here propose a new strategy of hybrid training algorithm based on the fusion of the ANFIS and Harmony Search (HS), HS-ANFIS, which is adopted to tune all the parameters of the ANFIS. The validity of our method is verified by numerical experiments.\",\"PeriodicalId\":294394,\"journal\":{\"name\":\"2012 Eighth International Conference on Computational Intelligence and Security\",\"volume\":\"58 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Eighth International Conference on Computational Intelligence and Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIS.2012.159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Eighth International Conference on Computational Intelligence and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS.2012.159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

本文采用自适应神经模糊推理系统(ANFIS)对癫痫脑电图信号进行分类。该方法将神经网络的自适应能力与基于模糊逻辑的定性方法相结合。利用给定的输入/输出数据集构建模糊推理系统,并结合最小二乘法对其隶属度函数参数进行反向传播训练。然而,这种训练方法有时可能会导致局部最优。本文提出了一种基于ANFIS和和声搜索(HS)融合的混合训练算法,即HS-ANFIS,用于对ANFIS的所有参数进行调谐。数值实验验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Epileptic EEG Signal Classification with ANFIS Based on Harmony Search Method
In this paper, the Adaptive Neuro-Fuzzy Inference System (ANFIS) is used for the classification of the epileptic electroencephalogram (EEG) signals. The ANFIS combines the adaptation capability of the neural networks and the fuzzy logic-based qualitative approach together. A given input/output data set is deployed to construct a fuzzy inference system, whose membership function parameters are trained using a back propagation algorithm in combination with a least squares method. However, the training method sometimes may lead to local optima. We here propose a new strategy of hybrid training algorithm based on the fusion of the ANFIS and Harmony Search (HS), HS-ANFIS, which is adopted to tune all the parameters of the ANFIS. The validity of our method is verified by numerical experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信