用神经艺术去识别视频中的人

K. Brkić, I. Sikirić, T. Hrkać, Z. Kalafatić
{"title":"用神经艺术去识别视频中的人","authors":"K. Brkić, I. Sikirić, T. Hrkać, Z. Kalafatić","doi":"10.1109/IPTA.2016.7820987","DOIUrl":null,"url":null,"abstract":"We propose a computer vision-based de-identification pipeline that enables automated segmentation of humans in videos and effective protection of their identities. Due to the ubiquity of video surveillance, many jurisdictions implement strict regulations for the protection of personal data in publicly collected video sequences, requiring the data to be de-identified. However, soft biometric and non-biometric features like clothing, hair color, personal items, skin marks, etc., are often overlooked in the process. Assuming a surveillance scenario, we combine GMM-based background subtraction with an improved version of the GrabCut algorithm to find and segment pedestrians. We use the responses of a deep neural network to de-identify soft and non-biometric features through style mixing with images of other pedestrians. Our method produces de-identified versions of the input frames while preserving the naturalness and utility of the de-identified data.","PeriodicalId":123429,"journal":{"name":"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"De-identifying people in videos using neural art\",\"authors\":\"K. Brkić, I. Sikirić, T. Hrkać, Z. Kalafatić\",\"doi\":\"10.1109/IPTA.2016.7820987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a computer vision-based de-identification pipeline that enables automated segmentation of humans in videos and effective protection of their identities. Due to the ubiquity of video surveillance, many jurisdictions implement strict regulations for the protection of personal data in publicly collected video sequences, requiring the data to be de-identified. However, soft biometric and non-biometric features like clothing, hair color, personal items, skin marks, etc., are often overlooked in the process. Assuming a surveillance scenario, we combine GMM-based background subtraction with an improved version of the GrabCut algorithm to find and segment pedestrians. We use the responses of a deep neural network to de-identify soft and non-biometric features through style mixing with images of other pedestrians. Our method produces de-identified versions of the input frames while preserving the naturalness and utility of the de-identified data.\",\"PeriodicalId\":123429,\"journal\":{\"name\":\"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"volume\":\"134 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPTA.2016.7820987\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2016.7820987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们提出了一种基于计算机视觉的去识别管道,可以自动分割视频中的人物并有效保护他们的身份。由于视频监控无处不在,许多司法管辖区对公开收集的视频序列中的个人数据实施严格的保护规定,要求数据去识别。然而,软生物特征和非生物特征,如服装、发色、个人物品、皮肤痕迹等,在这个过程中往往被忽视。假设一个监控场景,我们将基于gmm的背景减法与改进版本的GrabCut算法相结合,以发现和分割行人。我们使用深度神经网络的响应,通过与其他行人的图像进行风格混合来去除软特征和非生物特征的识别。我们的方法产生输入帧的去标识版本,同时保留去标识数据的自然性和实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
De-identifying people in videos using neural art
We propose a computer vision-based de-identification pipeline that enables automated segmentation of humans in videos and effective protection of their identities. Due to the ubiquity of video surveillance, many jurisdictions implement strict regulations for the protection of personal data in publicly collected video sequences, requiring the data to be de-identified. However, soft biometric and non-biometric features like clothing, hair color, personal items, skin marks, etc., are often overlooked in the process. Assuming a surveillance scenario, we combine GMM-based background subtraction with an improved version of the GrabCut algorithm to find and segment pedestrians. We use the responses of a deep neural network to de-identify soft and non-biometric features through style mixing with images of other pedestrians. Our method produces de-identified versions of the input frames while preserving the naturalness and utility of the de-identified data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信