比较时间序列图可视化的基准任务和洞察力评估方法

Purvi Saraiya, Chris North, K. Duca
{"title":"比较时间序列图可视化的基准任务和洞察力评估方法","authors":"Purvi Saraiya, Chris North, K. Duca","doi":"10.1145/2110192.2110201","DOIUrl":null,"url":null,"abstract":"A study to compare two different empirical research methods for evaluating visualization tools is described: the traditional benchmark-task method and the insight method. The methods were compared using different criteria such as: the conclusions about the visualization tools provided by each method, the time participants spent during the study, the time and effort required to analyze the resulting empirical data, and the effect of individual differences between participants on the results. The studies used three graph visualization alternatives to associate bioinformatics microarray timeseries data to pathway graph vertices, based on popular approaches used in existing bioinformatics software.","PeriodicalId":235801,"journal":{"name":"Workshop on Beyond Time and Errors: Novel Evaluation Methods for Visualization","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Comparing benchmark task and insight evaluation methods on timeseries graph visualizations\",\"authors\":\"Purvi Saraiya, Chris North, K. Duca\",\"doi\":\"10.1145/2110192.2110201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A study to compare two different empirical research methods for evaluating visualization tools is described: the traditional benchmark-task method and the insight method. The methods were compared using different criteria such as: the conclusions about the visualization tools provided by each method, the time participants spent during the study, the time and effort required to analyze the resulting empirical data, and the effect of individual differences between participants on the results. The studies used three graph visualization alternatives to associate bioinformatics microarray timeseries data to pathway graph vertices, based on popular approaches used in existing bioinformatics software.\",\"PeriodicalId\":235801,\"journal\":{\"name\":\"Workshop on Beyond Time and Errors: Novel Evaluation Methods for Visualization\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Beyond Time and Errors: Novel Evaluation Methods for Visualization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2110192.2110201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Beyond Time and Errors: Novel Evaluation Methods for Visualization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2110192.2110201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

本文对可视化工具评价的两种不同的实证研究方法进行了比较研究:传统的基准任务法和洞察法。采用不同的标准对方法进行比较,如:每种方法提供的可视化工具的结论,参与者在研究中花费的时间,分析所得经验数据所需的时间和精力,以及参与者之间的个体差异对结果的影响。该研究基于现有生物信息学软件中使用的流行方法,使用三种图形可视化替代方案将生物信息学微阵列时间序列数据与路径图顶点相关联。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparing benchmark task and insight evaluation methods on timeseries graph visualizations
A study to compare two different empirical research methods for evaluating visualization tools is described: the traditional benchmark-task method and the insight method. The methods were compared using different criteria such as: the conclusions about the visualization tools provided by each method, the time participants spent during the study, the time and effort required to analyze the resulting empirical data, and the effect of individual differences between participants on the results. The studies used three graph visualization alternatives to associate bioinformatics microarray timeseries data to pathway graph vertices, based on popular approaches used in existing bioinformatics software.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信