基于非广泛熵的三级灰度图像分割

I. El-Feghi, M. Galhoud, M. Sid-Ahmed, M. Ahmadi
{"title":"基于非广泛熵的三级灰度图像分割","authors":"I. El-Feghi, M. Galhoud, M. Sid-Ahmed, M. Ahmadi","doi":"10.1109/CGIV.2007.83","DOIUrl":null,"url":null,"abstract":"The segmentation of images into meaningful and homogenous regions is a crucial step in many image analysis applications. In this paper, we present a three-level thresholding method for image segmentation. The method is based on maximizing non-extensive entropy. After segmentation, the output image will consist of three homogenous regions, namely, dark, gray and white. The threshold value for each region is decided by maximizing an extended form of Tsallis entropy. To improve the performance of the proposed algorithm, an efficient and computationally fast method for initializing the search for maximum entropy is also presented. Results obtained using the proposed algorithm are compared with those obtained using Shannon entropy.","PeriodicalId":433577,"journal":{"name":"Computer Graphics, Imaging and Visualisation (CGIV 2007)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Three-Level Gray-Scale Images Segmentation using Non-extensive Entropy\",\"authors\":\"I. El-Feghi, M. Galhoud, M. Sid-Ahmed, M. Ahmadi\",\"doi\":\"10.1109/CGIV.2007.83\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The segmentation of images into meaningful and homogenous regions is a crucial step in many image analysis applications. In this paper, we present a three-level thresholding method for image segmentation. The method is based on maximizing non-extensive entropy. After segmentation, the output image will consist of three homogenous regions, namely, dark, gray and white. The threshold value for each region is decided by maximizing an extended form of Tsallis entropy. To improve the performance of the proposed algorithm, an efficient and computationally fast method for initializing the search for maximum entropy is also presented. Results obtained using the proposed algorithm are compared with those obtained using Shannon entropy.\",\"PeriodicalId\":433577,\"journal\":{\"name\":\"Computer Graphics, Imaging and Visualisation (CGIV 2007)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Graphics, Imaging and Visualisation (CGIV 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CGIV.2007.83\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics, Imaging and Visualisation (CGIV 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CGIV.2007.83","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

在许多图像分析应用中,将图像分割成有意义和均匀的区域是至关重要的一步。本文提出了一种用于图像分割的三级阈值分割方法。该方法基于非扩展熵的最大化。分割后的输出图像由暗、灰、白三个均匀区域组成。每个区域的阈值是通过最大化Tsallis熵的扩展形式来确定的。为了提高算法的性能,还提出了一种高效且计算速度快的最大熵初始化搜索方法。将该算法的结果与香农熵的结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Three-Level Gray-Scale Images Segmentation using Non-extensive Entropy
The segmentation of images into meaningful and homogenous regions is a crucial step in many image analysis applications. In this paper, we present a three-level thresholding method for image segmentation. The method is based on maximizing non-extensive entropy. After segmentation, the output image will consist of three homogenous regions, namely, dark, gray and white. The threshold value for each region is decided by maximizing an extended form of Tsallis entropy. To improve the performance of the proposed algorithm, an efficient and computationally fast method for initializing the search for maximum entropy is also presented. Results obtained using the proposed algorithm are compared with those obtained using Shannon entropy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信