通过多智能体元学习框架的基于内容的图像检索

A. Bagherjeiran, R. Vilalta, C. Eick
{"title":"通过多智能体元学习框架的基于内容的图像检索","authors":"A. Bagherjeiran, R. Vilalta, C. Eick","doi":"10.1109/ICTAI.2005.50","DOIUrl":null,"url":null,"abstract":"The objective of a general-purpose content-based image retrieval system is to find images in a database that match an external measure of relevance. Since users follow different and inconsistent relevance measures, processing queries in a task-specific manner has shown to be an effective approach. Viewing specialized image retrieval algorithms as agents, we propose a general-purpose image retrieval system that uses a new multi-agent meta-learning framework. The framework adapts a distance function defined over both image distance weights and image queries to identify clusters of algorithms that produce similar solutions to similar problems. Experiments compare our approach with a traditional information retrieval algorithm; results show that our framework provides better average relevance scores","PeriodicalId":294694,"journal":{"name":"17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'05)","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Content-based image retrieval through a multi-agent meta-learning framework\",\"authors\":\"A. Bagherjeiran, R. Vilalta, C. Eick\",\"doi\":\"10.1109/ICTAI.2005.50\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of a general-purpose content-based image retrieval system is to find images in a database that match an external measure of relevance. Since users follow different and inconsistent relevance measures, processing queries in a task-specific manner has shown to be an effective approach. Viewing specialized image retrieval algorithms as agents, we propose a general-purpose image retrieval system that uses a new multi-agent meta-learning framework. The framework adapts a distance function defined over both image distance weights and image queries to identify clusters of algorithms that produce similar solutions to similar problems. Experiments compare our approach with a traditional information retrieval algorithm; results show that our framework provides better average relevance scores\",\"PeriodicalId\":294694,\"journal\":{\"name\":\"17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'05)\",\"volume\":\"121 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTAI.2005.50\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2005.50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

通用的基于内容的图像检索系统的目标是在数据库中查找与外部相关性度量相匹配的图像。由于用户遵循不同且不一致的相关性度量,以特定于任务的方式处理查询已被证明是一种有效的方法。将专门的图像检索算法视为代理,我们提出了一个通用的图像检索系统,该系统使用了一个新的多代理元学习框架。该框架采用在图像距离权重和图像查询上定义的距离函数来识别对类似问题产生类似解决方案的算法簇。实验将该方法与传统的信息检索算法进行了比较;结果表明,我们的框架提供了更好的平均相关性分数
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Content-based image retrieval through a multi-agent meta-learning framework
The objective of a general-purpose content-based image retrieval system is to find images in a database that match an external measure of relevance. Since users follow different and inconsistent relevance measures, processing queries in a task-specific manner has shown to be an effective approach. Viewing specialized image retrieval algorithms as agents, we propose a general-purpose image retrieval system that uses a new multi-agent meta-learning framework. The framework adapts a distance function defined over both image distance weights and image queries to identify clusters of algorithms that produce similar solutions to similar problems. Experiments compare our approach with a traditional information retrieval algorithm; results show that our framework provides better average relevance scores
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信