{"title":"功能磁共振成像研究中所需样本量的实际估计","authors":"Cemre Candemir","doi":"10.22531/muglajsci.1282492","DOIUrl":null,"url":null,"abstract":"In functional Magnetic Resonance Imaging (fMRI) studies, the variability in fMRI data, the complexity of the analysis, and the need to correct for multiple comparisons make determining the appropriate sample size challenging. Hence, power analysis becomes an important tool to use for determining the appropriate sample size needed to achieve reliable and statistically significant results. In this context, this study aims to represent the process of conducting a power analysis and estimating the sample size for an fMRI study. To do this, three functional, affective, behavioral, and cognitive, data sets having different experimental task designs are used. This study provides a step-by-step guide on how to conduct a power analysis and estimate the sample size for various fMRI studies.","PeriodicalId":149663,"journal":{"name":"Mugla Journal of Science and Technology","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A PRACTICAL ESTIMATION OF THE REQUIRED SAMPLE SIZE IN FMRI STUDIES\",\"authors\":\"Cemre Candemir\",\"doi\":\"10.22531/muglajsci.1282492\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In functional Magnetic Resonance Imaging (fMRI) studies, the variability in fMRI data, the complexity of the analysis, and the need to correct for multiple comparisons make determining the appropriate sample size challenging. Hence, power analysis becomes an important tool to use for determining the appropriate sample size needed to achieve reliable and statistically significant results. In this context, this study aims to represent the process of conducting a power analysis and estimating the sample size for an fMRI study. To do this, three functional, affective, behavioral, and cognitive, data sets having different experimental task designs are used. This study provides a step-by-step guide on how to conduct a power analysis and estimate the sample size for various fMRI studies.\",\"PeriodicalId\":149663,\"journal\":{\"name\":\"Mugla Journal of Science and Technology\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mugla Journal of Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22531/muglajsci.1282492\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mugla Journal of Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22531/muglajsci.1282492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A PRACTICAL ESTIMATION OF THE REQUIRED SAMPLE SIZE IN FMRI STUDIES
In functional Magnetic Resonance Imaging (fMRI) studies, the variability in fMRI data, the complexity of the analysis, and the need to correct for multiple comparisons make determining the appropriate sample size challenging. Hence, power analysis becomes an important tool to use for determining the appropriate sample size needed to achieve reliable and statistically significant results. In this context, this study aims to represent the process of conducting a power analysis and estimating the sample size for an fMRI study. To do this, three functional, affective, behavioral, and cognitive, data sets having different experimental task designs are used. This study provides a step-by-step guide on how to conduct a power analysis and estimate the sample size for various fMRI studies.