基于LP残差和神经网络模型的音频片段分类

A. Bajpai, B. Yegnanarayana
{"title":"基于LP残差和神经网络模型的音频片段分类","authors":"A. Bajpai, B. Yegnanarayana","doi":"10.5281/ZENODO.38479","DOIUrl":null,"url":null,"abstract":"In this paper, we demonstrate the presence of audio-specific information in the linear prediction (LP) residual, obtained after removing the predictable part of the signal. We emphasize the importance of information present in the LP residual of audio signals, which if added to the spectral information, can give a better performing system. Since it is difficult to extract information from the residual using known signal processing algorithms, neural networks (NN) models are proposed. In this paper, autoassociative neural networks (AANN) models are used to capture the audio-specific information from the LP residual of signals. Multilayer feedforward neural networks (MLFFNN) models or multilayer perceptron (MLP) are used to classify the audio data using the audio-specific information captured by AANN models.","PeriodicalId":347658,"journal":{"name":"2004 12th European Signal Processing Conference","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Audio clip classification using LP residual and neural networks models\",\"authors\":\"A. Bajpai, B. Yegnanarayana\",\"doi\":\"10.5281/ZENODO.38479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we demonstrate the presence of audio-specific information in the linear prediction (LP) residual, obtained after removing the predictable part of the signal. We emphasize the importance of information present in the LP residual of audio signals, which if added to the spectral information, can give a better performing system. Since it is difficult to extract information from the residual using known signal processing algorithms, neural networks (NN) models are proposed. In this paper, autoassociative neural networks (AANN) models are used to capture the audio-specific information from the LP residual of signals. Multilayer feedforward neural networks (MLFFNN) models or multilayer perceptron (MLP) are used to classify the audio data using the audio-specific information captured by AANN models.\",\"PeriodicalId\":347658,\"journal\":{\"name\":\"2004 12th European Signal Processing Conference\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2004 12th European Signal Processing Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/ZENODO.38479\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 12th European Signal Processing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.38479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们证明了在去除信号的可预测部分后获得的线性预测(LP)残差中存在音频特定信息。我们强调音频信号LP残差中存在的信息的重要性,如果将这些信息与频谱信息相结合,可以得到更好的系统性能。由于使用已知的信号处理算法难以从残差中提取信息,因此提出了神经网络模型。本文采用自关联神经网络(AANN)模型从信号的LP残差中捕获音频特定信息。使用多层前馈神经网络(MLFFNN)模型或多层感知器(MLP)模型根据AANN模型捕获的音频特定信息对音频数据进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Audio clip classification using LP residual and neural networks models
In this paper, we demonstrate the presence of audio-specific information in the linear prediction (LP) residual, obtained after removing the predictable part of the signal. We emphasize the importance of information present in the LP residual of audio signals, which if added to the spectral information, can give a better performing system. Since it is difficult to extract information from the residual using known signal processing algorithms, neural networks (NN) models are proposed. In this paper, autoassociative neural networks (AANN) models are used to capture the audio-specific information from the LP residual of signals. Multilayer feedforward neural networks (MLFFNN) models or multilayer perceptron (MLP) are used to classify the audio data using the audio-specific information captured by AANN models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信