Friedrich Burkhard von der Osten, M. Kirley, Tim Miller
{"title":"噪声下的预期性污名性避碰","authors":"Friedrich Burkhard von der Osten, M. Kirley, Tim Miller","doi":"10.1145/2576768.2598389","DOIUrl":null,"url":null,"abstract":"Reactive path planning to avoid collisions with moving obstacles enables more robust agent systems. However, many solutions assume that moving objects are passive; that is, they do not consider that the moving objects are themselves re-planning to avoid collisions, and thus may change their trajectory. In this paper we present a model, Anticipatory Stigmergic Collision Avoidance (ASCA) for reciprocal collision avoidance using anticipatory stigmergy. Unlike standard stigmergy, in which agents leave pheromones to indicate a trace of previous actions, anticipatory stigmergy deposits pheromones on intended future paths. By sharing their intended future paths with each other at regular intervals, agents can re-plan to attempt to avoid collisions. We experimentally evaluate ASCA over three scenarios, and compare with a state of art approach, Reciprocal Velocity Obstacles (RVO). Our evaluation showed that ASCA is consistently more robust in noisy environments in which transmitted information can be lost or degraded. Further, using ASCA without noise results in fewer collisions than RVO when agents are in formation, but more collisions when formed randomly.","PeriodicalId":123241,"journal":{"name":"Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Anticipatory stigmergic collision avoidance under noise\",\"authors\":\"Friedrich Burkhard von der Osten, M. Kirley, Tim Miller\",\"doi\":\"10.1145/2576768.2598389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reactive path planning to avoid collisions with moving obstacles enables more robust agent systems. However, many solutions assume that moving objects are passive; that is, they do not consider that the moving objects are themselves re-planning to avoid collisions, and thus may change their trajectory. In this paper we present a model, Anticipatory Stigmergic Collision Avoidance (ASCA) for reciprocal collision avoidance using anticipatory stigmergy. Unlike standard stigmergy, in which agents leave pheromones to indicate a trace of previous actions, anticipatory stigmergy deposits pheromones on intended future paths. By sharing their intended future paths with each other at regular intervals, agents can re-plan to attempt to avoid collisions. We experimentally evaluate ASCA over three scenarios, and compare with a state of art approach, Reciprocal Velocity Obstacles (RVO). Our evaluation showed that ASCA is consistently more robust in noisy environments in which transmitted information can be lost or degraded. Further, using ASCA without noise results in fewer collisions than RVO when agents are in formation, but more collisions when formed randomly.\",\"PeriodicalId\":123241,\"journal\":{\"name\":\"Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2576768.2598389\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2576768.2598389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Anticipatory stigmergic collision avoidance under noise
Reactive path planning to avoid collisions with moving obstacles enables more robust agent systems. However, many solutions assume that moving objects are passive; that is, they do not consider that the moving objects are themselves re-planning to avoid collisions, and thus may change their trajectory. In this paper we present a model, Anticipatory Stigmergic Collision Avoidance (ASCA) for reciprocal collision avoidance using anticipatory stigmergy. Unlike standard stigmergy, in which agents leave pheromones to indicate a trace of previous actions, anticipatory stigmergy deposits pheromones on intended future paths. By sharing their intended future paths with each other at regular intervals, agents can re-plan to attempt to avoid collisions. We experimentally evaluate ASCA over three scenarios, and compare with a state of art approach, Reciprocal Velocity Obstacles (RVO). Our evaluation showed that ASCA is consistently more robust in noisy environments in which transmitted information can be lost or degraded. Further, using ASCA without noise results in fewer collisions than RVO when agents are in formation, but more collisions when formed randomly.