E. Odarenko, Y. Sashkova, E. Odarenko, A. Shmat’ko, N. G. Shevchenko
{"title":"利用MPB封装分析改进光子晶体波导中的慢波模式","authors":"E. Odarenko, Y. Sashkova, E. Odarenko, A. Shmat’ko, N. G. Shevchenko","doi":"10.1109/MMET.2018.8460468","DOIUrl":null,"url":null,"abstract":"Modified photonic crystal waveguides with additional layers on the boundaries of hollow core are investigated. Dispersion diagrams and spatial distributions of the longitudinal electric field component are calculated. It is shown that modification of the photonic crystal waveguide results in changing of slow wave electric field cross section in the waveguide channel. Field intensity maxima of the slow wave even modes are formed not only on hollow core boundaries but also in the center of waveguide channel. Thus modified photonic crystal waveguides with hollow core can be used as novel slow-wave systems for vacuum electron devices with linear electron beams especially in terahertz frequency range.","PeriodicalId":343933,"journal":{"name":"2018 IEEE 17th International Conference on Mathematical Methods in Electromagnetic Theory (MMET)","volume":"177 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Analysis of Slow Wave Modes in Modified Photonic Crystal Waveguides Using the MPB Package\",\"authors\":\"E. Odarenko, Y. Sashkova, E. Odarenko, A. Shmat’ko, N. G. Shevchenko\",\"doi\":\"10.1109/MMET.2018.8460468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modified photonic crystal waveguides with additional layers on the boundaries of hollow core are investigated. Dispersion diagrams and spatial distributions of the longitudinal electric field component are calculated. It is shown that modification of the photonic crystal waveguide results in changing of slow wave electric field cross section in the waveguide channel. Field intensity maxima of the slow wave even modes are formed not only on hollow core boundaries but also in the center of waveguide channel. Thus modified photonic crystal waveguides with hollow core can be used as novel slow-wave systems for vacuum electron devices with linear electron beams especially in terahertz frequency range.\",\"PeriodicalId\":343933,\"journal\":{\"name\":\"2018 IEEE 17th International Conference on Mathematical Methods in Electromagnetic Theory (MMET)\",\"volume\":\"177 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 17th International Conference on Mathematical Methods in Electromagnetic Theory (MMET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMET.2018.8460468\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 17th International Conference on Mathematical Methods in Electromagnetic Theory (MMET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMET.2018.8460468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analysis of Slow Wave Modes in Modified Photonic Crystal Waveguides Using the MPB Package
Modified photonic crystal waveguides with additional layers on the boundaries of hollow core are investigated. Dispersion diagrams and spatial distributions of the longitudinal electric field component are calculated. It is shown that modification of the photonic crystal waveguide results in changing of slow wave electric field cross section in the waveguide channel. Field intensity maxima of the slow wave even modes are formed not only on hollow core boundaries but also in the center of waveguide channel. Thus modified photonic crystal waveguides with hollow core can be used as novel slow-wave systems for vacuum electron devices with linear electron beams especially in terahertz frequency range.