加速光束在通信中避障自愈特性的揭示

D. Inserra, G. Wen
{"title":"加速光束在通信中避障自愈特性的揭示","authors":"D. Inserra, G. Wen","doi":"10.1109/piers55526.2022.9792886","DOIUrl":null,"url":null,"abstract":"This paper deals with the application of self-accelerating beams for obstacle circumvention in communication applications. Particularly, although recent research works have proposed to take advantage of the self-healing property of self-accelerating beams like the Airy beam to circumvent obstacles and enable data transmission in non-line-of-sight (non-LOS) scenarios, the analysis presented in this paper shows that this is not a viable approach, at least when the transmission aperture dimension is comparable or smaller than that of the obstacle. Ray-optics interpretation, equivalent point source propagation models which take into account the presence of obstacles of different sizes, and full-electromagnetic wave simulation results will be provided to confirm this fact.","PeriodicalId":422383,"journal":{"name":"2022 Photonics & Electromagnetics Research Symposium (PIERS)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Demystifying Self-healing Property of Accelerating Beams for Obstacles Circumvention in Communication Applications\",\"authors\":\"D. Inserra, G. Wen\",\"doi\":\"10.1109/piers55526.2022.9792886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the application of self-accelerating beams for obstacle circumvention in communication applications. Particularly, although recent research works have proposed to take advantage of the self-healing property of self-accelerating beams like the Airy beam to circumvent obstacles and enable data transmission in non-line-of-sight (non-LOS) scenarios, the analysis presented in this paper shows that this is not a viable approach, at least when the transmission aperture dimension is comparable or smaller than that of the obstacle. Ray-optics interpretation, equivalent point source propagation models which take into account the presence of obstacles of different sizes, and full-electromagnetic wave simulation results will be provided to confirm this fact.\",\"PeriodicalId\":422383,\"journal\":{\"name\":\"2022 Photonics & Electromagnetics Research Symposium (PIERS)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Photonics & Electromagnetics Research Symposium (PIERS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/piers55526.2022.9792886\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Photonics & Electromagnetics Research Symposium (PIERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/piers55526.2022.9792886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文讨论了自加速波束在通信中避障的应用。特别是,尽管最近的研究工作已经提出利用自加速光束(如Airy光束)的自愈特性来绕过障碍物并实现非视距(non- of-sight, non-LOS)场景下的数据传输,但本文的分析表明,这不是一种可行的方法,至少当传输孔径尺寸与障碍物相当或小于障碍物时。将提供射线光学解释、考虑不同大小障碍物存在的等效点源传播模型以及全电磁波仿真结果来证实这一事实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Demystifying Self-healing Property of Accelerating Beams for Obstacles Circumvention in Communication Applications
This paper deals with the application of self-accelerating beams for obstacle circumvention in communication applications. Particularly, although recent research works have proposed to take advantage of the self-healing property of self-accelerating beams like the Airy beam to circumvent obstacles and enable data transmission in non-line-of-sight (non-LOS) scenarios, the analysis presented in this paper shows that this is not a viable approach, at least when the transmission aperture dimension is comparable or smaller than that of the obstacle. Ray-optics interpretation, equivalent point source propagation models which take into account the presence of obstacles of different sizes, and full-electromagnetic wave simulation results will be provided to confirm this fact.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信