预测Twitter对话中的立场以检测谣言的真实性:一种神经方法

Lahari Poddar, W. Hsu, M. Lee, Shruti Subramaniyam
{"title":"预测Twitter对话中的立场以检测谣言的真实性:一种神经方法","authors":"Lahari Poddar, W. Hsu, M. Lee, Shruti Subramaniyam","doi":"10.1109/ICTAI.2018.00021","DOIUrl":null,"url":null,"abstract":"Detecting rumors is a crucial task requiring significant time and manual effort in forms of investigative journalism. In social media such as Twitter, unverified information can get disseminated rapidly making early detection of potentially false rumors critical. We observe that the early reactions of people towards an emerging claim can be predictive of its veracity. We propose a novel neural network architecture using the stances of people engaging in a conversation on Twitter about a rumor for detecting its veracity. Our proposed solution comprises two key steps. We first detect the stance of each individual tweet, by considering the textual content of the tweet, its timestamp, as well as the sequential conversation structure leading up to the target tweet. Then we use the predicted stances of all tweets in a conversation tree to determine the veracity of the original rumor. We evaluate our model on the SemEval2017 rumor detection dataset and demonstrate that our solution outperforms the state-of-the-art approaches for both stance prediction and rumor veracity prediction tasks.","PeriodicalId":254686,"journal":{"name":"2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"Predicting Stances in Twitter Conversations for Detecting Veracity of Rumors: A Neural Approach\",\"authors\":\"Lahari Poddar, W. Hsu, M. Lee, Shruti Subramaniyam\",\"doi\":\"10.1109/ICTAI.2018.00021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detecting rumors is a crucial task requiring significant time and manual effort in forms of investigative journalism. In social media such as Twitter, unverified information can get disseminated rapidly making early detection of potentially false rumors critical. We observe that the early reactions of people towards an emerging claim can be predictive of its veracity. We propose a novel neural network architecture using the stances of people engaging in a conversation on Twitter about a rumor for detecting its veracity. Our proposed solution comprises two key steps. We first detect the stance of each individual tweet, by considering the textual content of the tweet, its timestamp, as well as the sequential conversation structure leading up to the target tweet. Then we use the predicted stances of all tweets in a conversation tree to determine the veracity of the original rumor. We evaluate our model on the SemEval2017 rumor detection dataset and demonstrate that our solution outperforms the state-of-the-art approaches for both stance prediction and rumor veracity prediction tasks.\",\"PeriodicalId\":254686,\"journal\":{\"name\":\"2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTAI.2018.00021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2018.00021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

摘要

在调查性新闻中,发现谣言是一项至关重要的任务,需要大量的时间和人力。在Twitter等社交媒体上,未经证实的信息可以迅速传播,因此及早发现潜在的虚假谣言至关重要。我们观察到,人们对新出现的说法的早期反应可以预测其真实性。我们提出了一种新的神经网络架构,利用人们在Twitter上就谣言进行对话的立场来检测其真实性。我们提出的解决方案包括两个关键步骤。我们首先通过考虑推文的文本内容、时间戳以及指向目标推文的顺序对话结构来检测每条推文的立场。然后,我们使用会话树中所有tweet的预测立场来确定原始谣言的真实性。我们在SemEval2017谣言检测数据集上评估了我们的模型,并证明我们的解决方案在立场预测和谣言准确性预测任务方面都优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Stances in Twitter Conversations for Detecting Veracity of Rumors: A Neural Approach
Detecting rumors is a crucial task requiring significant time and manual effort in forms of investigative journalism. In social media such as Twitter, unverified information can get disseminated rapidly making early detection of potentially false rumors critical. We observe that the early reactions of people towards an emerging claim can be predictive of its veracity. We propose a novel neural network architecture using the stances of people engaging in a conversation on Twitter about a rumor for detecting its veracity. Our proposed solution comprises two key steps. We first detect the stance of each individual tweet, by considering the textual content of the tweet, its timestamp, as well as the sequential conversation structure leading up to the target tweet. Then we use the predicted stances of all tweets in a conversation tree to determine the veracity of the original rumor. We evaluate our model on the SemEval2017 rumor detection dataset and demonstrate that our solution outperforms the state-of-the-art approaches for both stance prediction and rumor veracity prediction tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信