基于整数规划的最优量子位分配和路由

G. Nannicini, L. Bishop, O. Günlük, P. Jurcevic
{"title":"基于整数规划的最优量子位分配和路由","authors":"G. Nannicini, L. Bishop, O. Günlük, P. Jurcevic","doi":"10.1145/3544563","DOIUrl":null,"url":null,"abstract":"We consider the problem of mapping a logical quantum circuit onto a given hardware with limited 2-qubit connectivity. We model this problem as an integer linear program, using a network flow formulation with binary variables that includes the initial allocation of qubits and their routing. We consider several cost functions: an approximation of the fidelity of the circuit, its total depth, and a measure of cross-talk, all of which can be incorporated in the model. Numerical experiments on synthetic data and different hardware topologies indicate that the error rate and depth can be optimized simultaneously without significant loss. We test our algorithm on a large number of quantum volume circuits, optimizing for error rate and depth; our algorithm significantly reduces the number of CNOTs compared to Qiskit’s default transpiler SABRE [19] and produces circuits that, when executed on hardware, exhibit higher fidelity.","PeriodicalId":365166,"journal":{"name":"ACM Transactions on Quantum Computing","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Optimal Qubit Assignment and Routing via Integer Programming\",\"authors\":\"G. Nannicini, L. Bishop, O. Günlük, P. Jurcevic\",\"doi\":\"10.1145/3544563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of mapping a logical quantum circuit onto a given hardware with limited 2-qubit connectivity. We model this problem as an integer linear program, using a network flow formulation with binary variables that includes the initial allocation of qubits and their routing. We consider several cost functions: an approximation of the fidelity of the circuit, its total depth, and a measure of cross-talk, all of which can be incorporated in the model. Numerical experiments on synthetic data and different hardware topologies indicate that the error rate and depth can be optimized simultaneously without significant loss. We test our algorithm on a large number of quantum volume circuits, optimizing for error rate and depth; our algorithm significantly reduces the number of CNOTs compared to Qiskit’s default transpiler SABRE [19] and produces circuits that, when executed on hardware, exhibit higher fidelity.\",\"PeriodicalId\":365166,\"journal\":{\"name\":\"ACM Transactions on Quantum Computing\",\"volume\":\"95 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Quantum Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3544563\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Quantum Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3544563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

我们考虑将逻辑量子电路映射到具有有限2量子位连接的给定硬件上的问题。我们将此问题建模为整数线性规划,使用包含二进制变量的网络流公式,其中包括量子位的初始分配及其路由。我们考虑了几个成本函数:电路保真度的近似值,其总深度和串扰的度量,所有这些都可以纳入模型中。在合成数据和不同硬件拓扑上的数值实验表明,该方法可以在不造成显著损失的情况下同时优化错误率和深度。我们在大量量子体积电路上测试了我们的算法,优化了错误率和深度;与Qiskit的默认转译器SABRE[19]相比,我们的算法显著减少了cnet的数量,并且产生的电路在硬件上执行时具有更高的保真度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Qubit Assignment and Routing via Integer Programming
We consider the problem of mapping a logical quantum circuit onto a given hardware with limited 2-qubit connectivity. We model this problem as an integer linear program, using a network flow formulation with binary variables that includes the initial allocation of qubits and their routing. We consider several cost functions: an approximation of the fidelity of the circuit, its total depth, and a measure of cross-talk, all of which can be incorporated in the model. Numerical experiments on synthetic data and different hardware topologies indicate that the error rate and depth can be optimized simultaneously without significant loss. We test our algorithm on a large number of quantum volume circuits, optimizing for error rate and depth; our algorithm significantly reduces the number of CNOTs compared to Qiskit’s default transpiler SABRE [19] and produces circuits that, when executed on hardware, exhibit higher fidelity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信