HPCC系统的性能偏差预测

A. Karthik, Harsh Mishra, S. Jayanth, G. Shobha, Jyoti Shetty
{"title":"HPCC系统的性能偏差预测","authors":"A. Karthik, Harsh Mishra, S. Jayanth, G. Shobha, Jyoti Shetty","doi":"10.1109/Confluence52989.2022.9734182","DOIUrl":null,"url":null,"abstract":"Over the last decade, the volume of data has been growing at a larger rate in comparison to the processing power available. The advent of distributed computing was essential in being able to handle these vast amounts of data. However, the distribution of data across the systems may not be uniform and gives rise to the problems of data skew and performance skew. A key challenge is to estimate the effective performance skew of a set of queries based on the data skew of the dataset on a multi-computing cluster. We use HPCC Systems, a modern big data management and analysis tool. Methods used to measure the impact of performance skew on the performance of queries on a HPCC cluster are heavily dependent on human interpretation. This project aims to automate the process of skew prediction by analyzing the execution graphs of a job on the HPCC Systems cluster and predicting the probable performance skew for a given set of queries using a Random Forest Regressor Model.","PeriodicalId":261941,"journal":{"name":"2022 12th International Conference on Cloud Computing, Data Science & Engineering (Confluence)","volume":"123 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Performance Skew Prediction in HPCC Systems\",\"authors\":\"A. Karthik, Harsh Mishra, S. Jayanth, G. Shobha, Jyoti Shetty\",\"doi\":\"10.1109/Confluence52989.2022.9734182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over the last decade, the volume of data has been growing at a larger rate in comparison to the processing power available. The advent of distributed computing was essential in being able to handle these vast amounts of data. However, the distribution of data across the systems may not be uniform and gives rise to the problems of data skew and performance skew. A key challenge is to estimate the effective performance skew of a set of queries based on the data skew of the dataset on a multi-computing cluster. We use HPCC Systems, a modern big data management and analysis tool. Methods used to measure the impact of performance skew on the performance of queries on a HPCC cluster are heavily dependent on human interpretation. This project aims to automate the process of skew prediction by analyzing the execution graphs of a job on the HPCC Systems cluster and predicting the probable performance skew for a given set of queries using a Random Forest Regressor Model.\",\"PeriodicalId\":261941,\"journal\":{\"name\":\"2022 12th International Conference on Cloud Computing, Data Science & Engineering (Confluence)\",\"volume\":\"123 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 12th International Conference on Cloud Computing, Data Science & Engineering (Confluence)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/Confluence52989.2022.9734182\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 12th International Conference on Cloud Computing, Data Science & Engineering (Confluence)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Confluence52989.2022.9734182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在过去十年中,与可用的处理能力相比,数据量一直在以更快的速度增长。分布式计算的出现对于处理这些海量数据至关重要。然而,跨系统的数据分布可能不均匀,从而产生数据倾斜和性能倾斜的问题。一个关键的挑战是基于多计算集群上数据集的数据倾斜来估计一组查询的有效性能倾斜。我们使用HPCC系统,一个现代大数据管理和分析工具。用于测量性能倾斜对HPCC集群上查询性能的影响的方法严重依赖于人工解释。该项目旨在通过分析HPCC系统集群上作业的执行图,并使用随机森林回归模型预测给定查询集可能的性能倾斜,从而自动化倾斜预测过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance Skew Prediction in HPCC Systems
Over the last decade, the volume of data has been growing at a larger rate in comparison to the processing power available. The advent of distributed computing was essential in being able to handle these vast amounts of data. However, the distribution of data across the systems may not be uniform and gives rise to the problems of data skew and performance skew. A key challenge is to estimate the effective performance skew of a set of queries based on the data skew of the dataset on a multi-computing cluster. We use HPCC Systems, a modern big data management and analysis tool. Methods used to measure the impact of performance skew on the performance of queries on a HPCC cluster are heavily dependent on human interpretation. This project aims to automate the process of skew prediction by analyzing the execution graphs of a job on the HPCC Systems cluster and predicting the probable performance skew for a given set of queries using a Random Forest Regressor Model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信