RPC:使用随机投影的高效分类器集成

Lovedeep Gondara
{"title":"RPC:使用随机投影的高效分类器集成","authors":"Lovedeep Gondara","doi":"10.1109/ICMLA.2015.193","DOIUrl":null,"url":null,"abstract":"We propose a classifier ensemble called RPC based on principles of rotation forest using random projections. Random projections project the original high dimensional data into lower dimensions while preserving the dataset's geometrical structure reducing classifier's complexity. Random projections are also an efficient dimensionality reduction tool, removing noisy features from dataset and representing the information using only small number of features. Training set for RPC is created by applying random projection on random subsets of the feature set. The randomness of random projection coupled with random sampling adds diversity to RPC. Initial evaluation using datasets from UCI machine learning repository shows that RPC performs equally well or better than Random Forest, Bagging and AdaBoost. We demonstrate that using dimensionality reduction with RPC we can dramatically reduce datasets dimensions without any loss in classification accuracy and significantly enhance computational performance. Finally, we experiment building RPC with different base learners.","PeriodicalId":288427,"journal":{"name":"2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"RPC: An Efficient Classifier Ensemble Using Random Projections\",\"authors\":\"Lovedeep Gondara\",\"doi\":\"10.1109/ICMLA.2015.193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a classifier ensemble called RPC based on principles of rotation forest using random projections. Random projections project the original high dimensional data into lower dimensions while preserving the dataset's geometrical structure reducing classifier's complexity. Random projections are also an efficient dimensionality reduction tool, removing noisy features from dataset and representing the information using only small number of features. Training set for RPC is created by applying random projection on random subsets of the feature set. The randomness of random projection coupled with random sampling adds diversity to RPC. Initial evaluation using datasets from UCI machine learning repository shows that RPC performs equally well or better than Random Forest, Bagging and AdaBoost. We demonstrate that using dimensionality reduction with RPC we can dramatically reduce datasets dimensions without any loss in classification accuracy and significantly enhance computational performance. Finally, we experiment building RPC with different base learners.\",\"PeriodicalId\":288427,\"journal\":{\"name\":\"2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2015.193\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2015.193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们提出了一种基于随机投影旋转森林原理的分类器集成RPC。随机投影在保持数据集几何结构的同时,将原始的高维数据投影到较低的维,降低了分类器的复杂度。随机投影也是一种有效的降维工具,它可以去除数据集中的噪声特征,并仅使用少量特征来表示信息。RPC的训练集是通过对特征集的随机子集应用随机投影来创建的。随机投影的随机性与随机抽样相结合,增加了RPC的多样性。使用UCI机器学习存储库的数据集进行的初步评估表明,RPC的性能与Random Forest、Bagging和AdaBoost一样好,甚至更好。我们证明,使用RPC降维可以在不损失分类精度的情况下显著降低数据集的维数,并显著提高计算性能。最后,我们尝试用不同的基础学习器构建RPC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RPC: An Efficient Classifier Ensemble Using Random Projections
We propose a classifier ensemble called RPC based on principles of rotation forest using random projections. Random projections project the original high dimensional data into lower dimensions while preserving the dataset's geometrical structure reducing classifier's complexity. Random projections are also an efficient dimensionality reduction tool, removing noisy features from dataset and representing the information using only small number of features. Training set for RPC is created by applying random projection on random subsets of the feature set. The randomness of random projection coupled with random sampling adds diversity to RPC. Initial evaluation using datasets from UCI machine learning repository shows that RPC performs equally well or better than Random Forest, Bagging and AdaBoost. We demonstrate that using dimensionality reduction with RPC we can dramatically reduce datasets dimensions without any loss in classification accuracy and significantly enhance computational performance. Finally, we experiment building RPC with different base learners.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信